
A Final Report
Grant No. N00014-90-J-1339

l o January 1, 1990 - December 31, 1990

)SEVENTH IEEE WORKSHOP ON REAL-TIME

(0 OPERATING SYSTEMS AND SOFTWARE

(Submitted to:

Scientific Officer Code: 1133
I Gary M. Koob

Office of Naval Research
800 North Quincy Street

SArlington, VA 22217-5000

Submitted by:

R. P. Cook
Associate Professor

Report No. UVA/525442/CS91/101
September 1990

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF

ENGINEERING .
& APPLIED SCIENCE

University of Virginia
Thornton Hall
Charlottesville, VA 22903 90 0 . 6



I
I
I
I
I
I

UNIVERSITY OF VIRGINIA i
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-
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faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-
space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-
neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-
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specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only
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neering research program. The School of Engineering and Applied Science is an integral part of this
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3 Operating System Support for Adaptable Real-Time Systemst

Thomas J. LeBlanc3Evangelos P. Markatos

Computer Science Department
University of Rochester

Rochester, New York 14627
(716) 275-94913 { leblanc,markatos }@cs.rochester.edu

* Abstract

This paper outlines our plans for a real-time systems research program to support the long-
term goal of developing intelligent robots. The distinguishing characteristic of our approach to
real-time systems is an emphasis on system adaptability in a dynamic real-world environment.
We achieve adaptability by allowing multiple real-time process models, with different known
properties and timing constraints, to coexist within a single system and application. Using a
hardware architecture in which a large-scale multiprocessor controls a behavioral system with
vision and manipulation capabilities, we are constructing a prototype software environment that
provides a predictable schedule for reflexive robot tasks and a flexible environment for imple-
menting adaptive cognitive robot tasks. We will exploit multiple processors, user-level schedul-
ing, and user-defined process and communication models in the construction of real-time robotics

applications.

1. Introduction

A primary goal of modem real-time systems is predictability. Given sufficient information
about each process and the state of the world, a predictable system attempts to find a schedule
under which all processes meet their timing constraints. Such a schedule guarantees that timing
problems will not lead to incorrect system behavior, removing a common and complex source of
errors.

A real-time system can be made predictable only if the requisite information is available.
This information varies with the process model and the exact form of guarantee, but generally
includes attributes such as worst-case computation time, execution period, earliest starting time,
criticality or priority, and synchronization constraints. A predictable system uses this information
to reconcile the competing demands of the various processes in the system, creating a schedule
that guarantees that all processes will meet their timing constraints. Depending on how much
information is available and when it becomes available, off-line guarantees may be possible.
On-line guarantees, although potentially expensive, can be used to provide both early warnings
and atomic actions.

Even if complete information about every process is available, predictable systems do not3 make guarantees about external system behavior per se. Guarantees are only made regarding the

1Tis research was supported by NSF research grant no. CDA-8822724.
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timing constraints of individual processes; the system designer must embed timing constraints on
external behavior into the implementation of processes using mechanisms such as process period
or priority. In some cases predictions may not even be feasible, since they are often expensive to
make (many real-time scheduling problems have been proven to be computationally intractable
[2]) and may require information that is unavailable (for example, the computation time for a
search algorithm may be unbounded) or difficult to gather (for example, the state of the external
world). In addition, a predictable schedule lasts only as long as the world remains unchanged,and therefore may be of limited value in a highly dynamic environment.

I Underlying the emphasis on predictability is the assumption that ensuring correct behavior
in a real-time system is primarily a problem of meeting process timing constraints. While this
assumption holds true for many embedded systems, where scheduling and device management
dominate computation, it does not hold for many large reactive systems, including robotics appli-
cations, which often require sophisticated software and tremendous computational power.

This paper outlines our plans for a real-time systems research program to support the long-
term goal of developing intelligent robots. Using a hardware architecture in which a large-scale
multiprocessor controls a behavioral system with vision and manipulation capabilities, we pro-
pose to build a software environment for real-time systems based on the Psyche multiprocessor
operating system [11, 12]. The distinguishing characteristic of our approach is an emphasis on
adaptability in a dynamic real-world environment. We plan to develop a programming environ-
ment, consisting of an operating system, library packages, and other software tools, to support the
construction of adaptable real-time systems, with a particular focus on robotics applications.

Of course all systems attempt to be adaptable to some degree. The crucial distinction, in
our view, between predictable and adaptable real-time systems is whether it is possible or even
desirable to translate all broad timing constraints on behavior into narrow timing constraints on
individual processes. For example, we view AI as a fundamental component of any adaptable

system, including planning, searching, and reasoning. In such a system, timing constraints on
behavioral tasks might be well specified, but an upper bound on computation time for each proc-
ess might not be known. Process timing constraints may not be well-understood, or they may be
so complicated that they are only approximated by very pessimistic approaches (e.g., deadlines).
A predictable system would require that we limit our implementation to processes that fit a
predefined, possibly complex, model.

- We expect to exploit predictions when feasible; the difference is primarily one of emphasis.
We are concerned with applications containing large components that do not meet the limitations
imposed by predictable systems. Our intent is to explore the interface between hard and soft

real-time systems, with the goal of developing mechanisms to support the construction of intelli-
* gent robots.

A representative application is a mobile robot that moves from room to room. An applica-
tion program within the robot develops a plan of the form: (1) go to the door, (2) open the door,
(3) enter the hallway, (4) turn right, (5) go to the next room, (6) open the door, and (7) enter.
This plan must be executed within some time constraint. The application has an explicit
representation of this time constraint, having formulated both the goal and the constraint. The
plan is subject to dynamic modification (for example, an alternative route may be necessary if the
door is locked) and may include subgoals for which no explicit time bound is given. In order to
build real-time applications of this type we plan to exploit the following:

Predictable real-time systems technology - Many low-level processes in a robot implemen-
tation will have known timing constraints and computation needs. Whenever possib!e, we
plan to exploit known techniques for static and on-line scheduling to produce guarantees.
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Large-scale multiprocessors - We view the existence of multiple processors as an opportun-
ity to add another level of abstraction to real-time applications, and not as another compli-
cation to an already intractable scheduling problem. Although we will not have nearly
enough processors to assign each process a processor, we plan to separate different process
models and timing constraints across different processors. This will hopefully decrease the
complexity of the problem and increase the understandability of the program.

User-defined processes, synchronization, and communication - An adaptable system is
difficult to construct from a limited set of tools. By allowing the user to define new process
models, we can incorporate new process attributes into the scheduling algorithm. Rather
than requiring the kernel to define a large set of synchronization and communication primi-
tives for a single proz:ss model, we plan to allow the user to define both the process model

Sand appropriate synchronization and communication primitives.

User-level scheduling - The user often has more information on which to base a scheduling
decision than the kernel. Rather than widening the kernel interface to allow the user to pro-
vide all possible information, and thereby complicating the kernel scheduler, we plan to
build schedulers in user space. This approach not only allows closer cooperation between
the application and scheduler, it also allows multiple user-level schedulers, each tailored to
a specific set of tasks.

Al planning and reasoning systems - An adaptable system must be able to evaluate its
environment and choose an appropriate course of action. Rather than incorporate ad hoc
solutions to specific problems, we plan to work with our Al colleagues to exploit their
developments on general systems for planning and reasoning.

Many of our assumptions are shared with the designers of the Spring kernel [14], which has
the goal of supporting predictable real-time AI applications. Spring uses predictable dynamic
scheduling to add flexibility to systems that have historically been difficult to modify, unable to
adapt to changing conditions, and based entirely on static schedules. Our emphasis is on situa-
tions where the dynamic scheduling approach employed in the Spring kernel may be infeasible or
where other techniques could be fruitfully exploited, such as imprecise computations, criticality-
based scheduling, and exception propagation.

Our work also shares several ideas wiLh the CHAOS-ARC operating system kernel [4,5].
We both support hard and soft real-time constraints within a single program and allow the user to
tailor scheduling policies to changing conditions. CHAOS-ARC presents a single unified compu-
tation model based on objects, invocations, and transactions, whereas we allow users to define
their own process and communication models. We are also specifically interested in the use of
AI techniques in real-time applications.

In what follows, we present a brief overview of the Psyche multiprocessor operating sys-
tem. We then motivate our use of multiple real-time process models within a single system,
describe our plans for building a real-time system based on Psyche that incorporates two distinct
general models, and outline our research agenda.

3 2. Psyche Overview

For the past six years we have been engaged in the implementation and evaluation of sys-
tems software and applications for large-scale shared-memory multiprocessors. Based on this
experience, we have become convinced that the effective implementation of a wide range of
applications will require multiple models of parallelism, with differing notions of process state
and scheduling, communication, sharing, and protection. Since parallelism has become so
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fundamental both to the programmer's conceptual model and to the effective use of the underly-
ing hardware, existing approaches to operating system design, with a model of parallelism and
communication imposed by the system kernel, are too inflexible.

We have designed and implemented the kernel of an operating system called Psyche that
embodies a new approach. The principal motivation for Psyche is the support of multi-model
parallel programming, in which application programs written under different models of parallel-
ism can run on the same machine at the same time, and can interact in useful and well-structured
ways. Psyche achieves this flexibility by presenting a user interface based on the fundamental
primitives of shared-memory hardware: data, processors, subroutine calls, and protection boun-
daries. Rather than providing a fixed set of parallel programming abstractions, this interface pro-
vides an abstraction mechanism from which many different user-level abstractions can be built in
user space. A fundamental assumption of this approach is that there will be a substantial amount
of systems software above the kernel (in the form of library packages or programming language
implementations), and below the typical user.

Psyche provides the user with three basic abstractions: the realm, the process, and the vir-
tual processor. Realms form the unit of code and data sharing. Processes are user-level threads of
control. Virtual processors are kernel-level abstractions of physical processors on which
processes are scheduled. Processes are implemented in user space; the other two abstractions are
implemented in the kernel.

The realm is a passive entity that contains code and data. The code usually consists of
operations that provide a protocol for accessing the data. Since all code and data is encapsulated
in realms, all computation consists of the invocation of realm operations. Interprocess communi-
cation is effected by invoking operations of realms accessible to more than one process. Depend-
ing on the degree of protection desired, an invocation of a realm operation can be as fast as an
ordinary procedvre call or as safe as a heavyweight context switch. The two forms of invocation
are initiated in ,-xactly the same way, with the native architecture's jump-to-subroutine instruc-
tion. The kernel implements protected invocations by catching and interpreting page faults.

A virtual processor is the kernel-provided abstraction of a physical processor. A process
must be bound to a virtual processor in order to execute. There is no fixed correspondence
between virtual processors and processes; many processes will usually share a single virtual proc-
essor. A given process may run on different virtual processors at different points in time. The
user is responsible for the assignment of virtual processors to physical processors. When neces-
sary, the kernel multiplexes a single physical processor among several virtual processors using
priority and round-robin scheduling.

The creation and scheduling of processes is done entirely in user-space, without kernel
intervention. A data structure maintained by the user and visible to the kernel contains an indica-
tion of which process is being served by the current virtual processor. It is entirely possible (in
fact likely) that when execution enters the kernel the currently running process will be different
from the one that was running when execution last returned to user space.

Communication from the kernel to virtual processors takes the form of signals that resemble
software interrupts. A software interrupt occurs whenever a kernel-detected event occurs, such asa timer expiration. Using this mechanism, process schedulers can be implemented entirely in
user space, managing the representation of processes and mapping them onto virtual processors.

3 Th e Psyche kernel allows the user to define the most appropriate process model and policies
for resource management in each application. The average user may be unwilling or unable to
fully exploit these mechanisms; therefore, we plan to implement different policies in libraries that

I are linked to user programs and provide convenient high-level abstractions.
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Psyche is currently implemented on a 24-node BBN Butterfly Plus [1]. Our first robotics
application, a balloon bouncing program called Juggler, successfully ran in November 1989.
This application combines binocular camera input, a pipelined image processor, and a 6-degree-
of-freedom robot arm (with a squash racquet attached) to bounce a balloon. The implementation
uses a competing agent model of motor control; five processes compete with each other for access
to the robot arm to position the balloon in the visual field, to position the racquet under the bal-
loon, and to hit the balloon.

In most respects Juggler is a poor example of a real-time application. The worst possible
outcome is hardly catastrophic and no individual process is time critical. The software does not
need to process every input frame. Each application process is allocated a physical processor, so
scheduling is not a concern. Even if processes had to share processors, failure to execute any one
process during a particular time interval would have little if any affect on behavior; in the com-
peting agent model, each application process continually broadcasts commands to the robot in

competition with other processes.

Juggler does have characteristics that are representative of the type of application we plan to
support, however. The only timing constraint with respect to external behavior is "hit the balloon
before it hits the floor." The height of the balloon and rate of descent will vary over time.
Although it is possible to translate this constraint into timing constraints on processes that filter
the input, compute, and produce output commands, the result would not be the competing agent
model we wished to explore.

3. Multi-Model Real-Time Systems

Just as a single, complex parallel program may incorporate several different models of
parallelism and communication, a large, complex real-time system will likely have subsystems
with different types of timing constraints. For example, a robot application may consist of image
processing, planning, manipulation, and emergency subsystems. The image processing subsys-
tem is periodic, executing at a rate equal to the rate of camera input. The planning subsystem
controls the behavior of the robot and may utilize imprecise computations in order to find the best
plan in the available time. Manipulation activities occur as dictated by the plans generated in the
planning subsystem, and must meet the timing constraints given in the plan. The emergency sub-
system is aperiodic; it is activated in response to asynchronous events, and must respond withinnarrow time constraints.

Two different approaches can be used to implement this abstract functionality in a real-time
computing system. One approach is to provide a single, general process model that defines both
the process attributes and timing constraints, and an appropriate scheduler. This approach
requires that each process provide the necessary attribute information, such as worst-case compu-
tation time or period, and that all processes have similar timing constraints, such as deadline or
earliest-start-time constraints. Efforts to expand the utility of rate monotonic scheduling [9] fall
into this category. Rate monotonic scheduling assumes that processes are periodic, with known
computation times, and that each process has a deadline equal to its period. This model can also
support aperiodic processes with known computation times and deadlines, while still using a rate3 monotonic scheduler [6,13].

The advantage of using a single process model is that all processes in the system inherit the
proven properties of the scheduler, which may include on-line or off-line guarantees, and early
warnings. There are several disadvantages, however. Few models have been shown to be general
enough to incorporate any other models; no model is likely to incorporate the wide range of proc-
ess attributes and timing constraints already present in the literature. In addition, some processes
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may not be able to provide the attribute information required, or may have different timing con-
straints than those supported by the general model. Finally, a single model that combines the
attributes and timing constraints of several different types of processes may significantly compli-
cate the development of a corresponding scheduler, and is likely to lead to an extremely pessimis-
tic analysis.

The alternative approach, which we advocate, is to allow the system designer to define a
new process model for each set of process attributes and timing constraints, and to provide a
scheduler for each process model. We believe that this multi-model approach to real-time sys-
tems is preferable to the single-model approach for the following reasons:

Simplicity - A modular approach to scheduling simplifies both the development and
analysis of real-time applications. For each set of processes with specialized timing con-
straints, we develop a process model and scheduler tailored to the attributes and constraints
of that set

Tractability - Each scheduler manages the processes of a particular model and need not
worry about the processes of other models. The separation of scheduling algorithms for dif-
ferent process models reduces the number of constraints and attributes that must be con-3 sidered, simplifying the problem for each scheduler.

Flexibility - No prespecified limit on the allowable set of attributes or constraints is
imposed by the underlying system. As new combinations of process attributes and timing
constraints are developed, they can be incorporated into a system by building a correspond-
ing scheduler.

Extensibility - Each new process model receives a new scheduler. We can incorporate
new process models into the system without changing existing schedulers (or the kernel,
given our assumption that schedulers reside in user space).

These advantages are not without cost, however. By modularizing the scheduling problem,
we may be precluded from finding a globally optimal schedule, since even a set of locally optimal
solutions may not be globally optimal. We do not believe this limitation to be a serious one in
practice, however, because the problem of finding a globally optimal schedule in a multiprocessor
system is usually NP-hard; even single-model systems will use heuristics to find suboptimal
schedules.

In addition, we have introduced a new problem: how to map the various process models and
their schedulers onto hardware resources. There are two implementations we plan to explore: (1)
separate process models using hardware boundaries and (2) provide each process model with a
unique virtual machine, and allow virtual machines to share physical processors. The first imple-
mentation presupposes the existence of multiple processors. Hardware resources can be allocated
to models statically or dynamically, but are likely to be reallocated relatively infrequently com-
pared to the arrival and execution rate of processes. As a result, the dynamic scheduling decision
does not have to balance the competing concerns of processes from different models; that balance
is struck when hardware resources are allocated. It is worth noting that this result is true even ifwe choose the second implementation.

In the second implementation, the kernel exports to the user a virtual machine for each
process model. This virtual machine must preserve the abstractions of a physical machine,
including some notion of physical time. This approach is particularly appropriate for process
models based on relative time (if, for example, the virtual machine slows physical time by a con-
stant factor, but preserves relative time), but is still practical in some cases for physical time.
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Finally, the existence of multiple process models within a single real-time application
implies that interactions are not limited solely to shared processor resources; communicationI across models is likely to occur. The general problem of preserving timing constraints during
communication has not been adequately addressed even when both processes involved have the
same attributes and constraints, although solutions for specific cases (such as maintaining a con-
sistent priority using a priority inversion protocol [10]) have been developed. The problem of
meeting timing constraints across models is even more complex.

We believe that the advantages of multiple models outweight the disadvantages, but pro-
gress on the problems listed above is required. We have begun to explore each of these problems
in the context of a specific design of a real-time system for robotics, which we describe in the3 next section.

3 4. An Adaptable Real-Time System for Robotics

Our current efforts are devoted to the development of a prototype adaptable real-time
environment based on the Psyche kernel. This environment will serve as a testbed for experi-
ments with real-time robot applications, and provide infrastructure for research on real-time sys-
tems.

As a first cut, we have divided the system into two general models, containing reflexive and
cognitive processes, that emphasize predictability and adaptability, respectively. Low-level,
robot life-support tasks reside in the reflexive subsystem; high-level application tasks reside in
the cognitive subsystem. By dividing our hardware resources into reflexive and cognitive subsys-
tems, we separate hard and soft real-time processes and their associated schedulers. This separa-
tion allows us to experiment with different approaches to real-time behavior using Al on a firm
foundation of already developed hard-real-time technology.

The reflexive subsystem resembles a traditional hard real-time system. Processes in the
reflexive subsystem are associated with /O device management or low-level robot control. These
processes are usually static in number, with bounded execution times and few (if any) failure
states. This subsystem provides the mechanisms needed to implement a predictable hard-real-
time system, including physical resource management, process models with priority, deadlines, or
other timing constraints, and associated schedulers. For the most part, the subsystem is imple-
mented in program libraries outside the kernel. These libraries implement resource management
algorithms that give static or dynamic guarantees and early warnings.

The reflexive subsystem may consist of processes from different process models, each with
their own timing constraint. Each model defines the information that is known about processeswithin the model, which may include the worst-case execution time, period, and deadline. For

example, the processes that control the moving parts of the robot are periodic, with known period
and computation times. These processes can be scheduled using a rate-monotonic scheduling
algorithm. On the other hand, processes that respond to interrupts from the human controller are
aperiodic, with known computation times. These processes are scheduled using the earliest-
deadline-first algorithm. We could model the aperiodic processes as periodic processes and use a
rate-monotonic scheduler [13] or use the modified earliest deadline first scheduler proposed in
[31, which can guarantee a set of tasks at the expense of high worst-case time complexity. Rather
than do so, we use cheap processors to separate the scheduling classes, simplify the scheduling
algorithms, and avoid a global, pessimistic, worst-case analysis.

The cognitive subsystem is a soft real-time system. The system attempts to satisfy those3timing constraints that do exist, however nothing catastrophic happens if a deadline is missed.
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Most of the Al applications execute within the cognitive subsystem. Since we assume that a
planner is in control of these applications and the planner establishes the relative importance of
each task, processes in the cognitive subsystem have associated criticalities. A process's critical-
ity may vary over time, depending on the relative importance of the process to the system's
behavior in a dynamic environment. When no other information is available or when a global
scheduling decision is required (in which case, we assume that the only known process attribute
is criticality), processes in the cognitive subsystem use a criticality-based scheduler. When other
information is available, such as deadline and computation time, we can use a scheduler that3 makes dynamic guarantees that satisfy known timing constraints.

The two subsystems will not be totally independent. Information will flow in both direc-
tions between the two subsystems. We must isolate the effects on the reflexive system of com-
munication with processes in the cognitive system, which in general may have no known timing
constraints. We must also propagate failures in the reflexive system to the cognitive system,
which is capable of choosing a falback position in the presence of hardware or software failures.
The exact nature of this interface is the subject of our current work.

We are aware of the difficulties of adding real-time support to a pre-existing operating sys-
tem, but we believe that our minimal kernel, which provides the ability to perform user-level
schediling and to definc process models in user space, is sufficient to explore real-time issues.
With user-level scheduling, we can create an optimal or suboptimal scheduler for each different
process model. For example, in the case where only process deadlines are known, earliest-
deadline-first provides an optimal schedule for meeting the deadlines. When other information is
available, such as the number of processes and their maximum computation time, periods, earliest
starting times, functions that relate the payoff of completion with time [7], the existence of
imprecise computations [8], precedence relations, and synchronization and communication con-
straints, other scheduling algorithms can incorporate the information.

The function of the scheduler may also vary from application to application. The scheduler
may be required to meet all the deadlines, meet the deadlines of the most critical processes, meetthose deadlines that optimize some cost function [7], or give each process enough computation

time, such that the approximation of the solution it computes is satisfactory (i.e., imprecise com-
putations). This type of flexibility is especially important in the multiprocessor case, where
optimal solutions are intractable and heuristic solutions need to be explored.

35. Research Agenda

Our research agenda is to develop the underlying principles of multi-model real-time sys-
tems, and to construct a working prototype that embodies those principles.

The primary problem we have introduced by allowing multiple real-time process models
within a single application is the effect of interactions across models, both implicit (e.g., shared
hardware resources) and explicit (e.g., communication). Our current prototype uses hardware par-
titions to separate the resources used by different models, but we believe software solutions are
possible. We plan to explore the costs and limitations of a software solution based on multi-
plexed virtual machines. We also plan to determine what attributes of a process model facilitate
or inhibit resource sharing.

We have just begun to investigate interfaces for communication protocols between models
that use the process attributes of the respective models to ensure the timing constraints within
each model. The general problem of communication across models is similar to the specific
problem of priority inversion, in that the communication protocol must respect the timing con-3straints of the processes involved. The general problem, however, does not assume a global
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attribute, such as priority, that holds across all models. Therefore, we must address the problem3 for each pair of models, although we hope to generalize specific solutions eventually.

Our work to date on a prototype system has emphasized operating system development with
an eye towards support for real-time applications. We are now in a position to begin construction
of real-time Psyche. In the short term we plan to augment the kernel interface to provide the user
with control over processor and memory resource allocation. Using this expanded interface, we
will build the reflexive subsystem for robot control and experiment with user-level scheduling.
Since naive processor assignment or scheduling can result in serious performance penalties due to
spinning, extensive context switching, remote memory access, bus contention, memory conten-
tion, and communication delays, we plan to incorporate application-specific knowledge in our
schedulers.

Our medium term plans for the prototype will concentrate on the cognitive subsystem. We
pl,?a to implement several process models in library code, including such concepts as synchroni-
zation and communication constraints, deadlines, criticality, and worst-case computation time.
We will also explore task organization techniques, exception propagation, and multiple commun-
ication models. Using these libraries we will investigate the integration and interaction of multi-
ple process models and incorporate Al subsystems now under development at Rochester. In
doing so, we expect to develop the interface between the reflexive and cognitive subsystems.

Our long term plan is to build applications that lead to an understanding of how we might
construct intelligent robots. One difficult question is an appropriate metric for success. Unlike a
predictable system, the behavior of an adaptable system is expected to be probabilistic; it may be
difficult to quantify alternative solutions for survival in a highly dynamic environment. Given our
emphasis on the appropriate system support, one measure of success will be how easily we can
integrate new behavior into an existing system. Another will be the extent to which multi-model
real-time support is used in practice, and the extent to which it simplifies the construction of com-
plex real-time systems.
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1 Introduction and Review of Previous Results

3 The control software of real-time systems cannot be termed reliable unless it exhibits two key attributes:

1. Computations must complete within well-defined timing constraints typically captured by execution3 deadlines[17].

2. Programs must exhibit predictable behavior in the presence of uncertain operating environments.

We posit that (2) requires that any real-time operating system kernel must provide constructs that
may be used to guarantee desired performance and functionality levels of selected computations in real-
time applications[6]. The CHAOSarc i object-based operating system kernel provides constructs that deal
with uncertainty by allowing programs to be adaptable[27] (i.e., changeable at runtime) in performance[20]
and functionality to varying operating conditions. Adaptations may anticipate changes in the operating
environment - termed preventive adaptations - or they may be reactions to external events - termed

reactive adaptations.
Our past research regarding real-time systems has dealt with preventive adaptation algorithms[20, 31

and with programming and operating system support for high-performance, adaptable control software[21,
22, 28, 25, 29, 9] - termed operating software - using embedded multiprocessors and a complex real-
time application (the ASV autonomous suspension vehicle[18]). Preventive adaptations may attempt to
guarantee certain levels of performance or functionality in operating software by adjusting system behavior
or parameters by prediction of future from past system behavior[3, 9, 11].

The CHAOSarc kernel as described here primarily targets reactive adaptations. However, we are now
3building programming and monitoring system support for CIIAOSarc based on the facilities described in

(3, 11, 29] so that such adaptations may be made easily for programs running with the CHAOSa r c kernel.

I 2 Summary of CHAOSarc Mechanisms

Reactive adaptations typically imply dynamic changes in software in response to unexpected external
events, like failures, temporary overloads, etc. Thus, CIIAOSarc must be capable of performing exception
and event handling, synchronization, scheduling, and atomic computations[32]. lowever, CIIAOS a rc

differs from related research in distributed databases and network operating systems in several ways.
First, as with the CHAOS operating system[8, 25], CIIAOSa r c 's object model is tailored to real-time
systems. Namely, object invocations may be sporadic, time-driven (periodic), or event-driven, and they
may have real-time attributes such as delays, deadlines, and criticalness. Deadline semantics may vary

3 1'A Concurrent, Hierarchical, Adaptable Operating System supporting atomic, real-time computations.
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3 from guaranteed deadlines, which are hard deadlines[17) that must not be missed, to soft deadlines that may
be missed occasionally, to recoverable deadlines that cause programmed recovery actions when missed, to
weak deadlines, which specify that partial or incomplete results are acceptable when the deadline is missed.

Invocations are executed by multi-grain tasks ranging from procedures executed synchronously in the
caller's address space, to single or multiple execution threads[I, 19, 21, 22], which may be executed asyn-
chronously and in parallel with the invoking task. Multi-grain tasks are complemented by multi-grain
invocations, which range from reliable invocations that maintain parameters and return information (or
even communication 'streams'[25]) to invocations that implement unreliable 'control signals' or 'pulses'.
Thus, the first contribution of the CHAOS a r c kernel is its support for the assembly of efficient represen-
tations of multi-grain objects and multi-type invocations, thereby providing significant flexibility in the
available operating system constructs compared to other systermns[12, 2].

The second contribution of CHAOSarc is its facility for guaranteeing the execution of selected parts
of real-time programs, using the notion of real-time, atomic computations - for simplicity, henceforth
termed 'atomic computations' - consisting of sets of atomic, real-time invocations. Each set defines a
grouping of related invocations that is to be viewed and guaranteed as a single execution unit. For each
atomic computation in CHAOSar c , three different classes of attributes are maintained: real-time, concur-
rency control, and recovery attributes. Real-time attributes specify temporal restrictions on computation
execution. Concurrency control attributes are constraints regarding the execution of concurrent atomic
computations caused by the sharing of resources, such as serializability. Finally, recovery attributes are

application-dependent properties required to guarantee that an incomplete (aborted) atomic computation
leaves the system in a state semantically equivalent to the state before its execution.

The third difference of CHAOSarc to other research in operating systems is its support for dynamic
concurrency control and task scheduling policies, due to the potentially unpredictable operating conditions
of real-time applications. These policies are novel in that they must themselves be predictable which
implies that arbitrary delays due to locking in concurrency control protocols or due to cascaded aborts in
timestamping-based protocols are not acceptable.

The primary motivation for the development of CHAOSarc are our experiences with several, highly
complex real-time applications, which were or are being constructed in conjunction with researchers in
academic and industrial environments(15]. In that work, it has become clear that the programming of
such applications requires high-level, efficient programming and operating system mechanisms, ranging
from notions of parallel tasks and task communication[21, 221, to objects and object invocations[25],
to finally, atomic computations[6]. Parallelism is required because most real-time systems' operating
environments exhibit substantial concurrency. Dynamic support for objects, which potentially exhibit
internal parallelism, allows programmers to develop and operate with more complex abstractions than
those programmable with tasks, yet not sacrifice efficiency due to alterations of the basic object model
implemented by CHAOS[25]. Finally, atomic computations permit programmers to state and maintain
statically determined global properties of their multi-object applications[10], thus enabling them to cope
better with dynamic, unpredictable variations in operating environments.

In'the remainder of this paper, we concentrate on the object-based kernel of CHAOSarc , in order to
demonstrate the implementation of CHAOSarc objects. A brief description of an implementation on a
BBN Butterfly Plus multiprocessor follows. The concurrency control protocols for atomic computations
and the dynamic scheduling of atomic object invocations are not presented here.

3 3 CHAOSarc Kernel Implementation

A previous publication has demonstrated the importance of real-time, atomic computations and invoca-
tions, using examples from several real-time applications[6]. It also demonstrated that the appropriate
implementation of both require efficient lower level mechanisms for representation of multi-grain objects,
for synchronization, and for object invocation. This section describes the fashion in which CIIAOS arc' s

operating system mechanisms support (1) non-atomic object invocations and the association of recovery
actions with objects and invocations and (2) the association of schedulers and concurrency control algo-
rithms with objects (e.g., to guarantee certain execution deadlines), resulting in atomic invocations and
computations.
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I Two major aims of the design and implementation of the CIIAOSarc mechanisms are predictability
and efficiency. Predictability means that kernel mechanisms and policies have "well behaved timing
properties", that is, there should be known upper bounds on the execution times of all kernel functions.
Also, the kernel must be accountable(8], which means that it must either honor its critical commitments
or report its failure to do so to higher software levels before such knowledge becomes obsolete (provided
that the underlying hardware remains in application-specific "safe states"). For example, an unanticipated
change in the system noted by the kernel might cause an invocation to miss its hard deadline. This fact
should be reported to the invoker within a time bound that enables the application to react accordingly.
Efficiency requires that the guaranteed upper bounds on the execution times of the kernel mechanisms be
as tight as possible.

The requirements of predictability and efficiency result in the following restrictions on the mechanisms
of the CHAOSrc kernel. First, limits are imposed on the complexity of the decision-making policies used
within the kernel. Second, mechanisms that provide statistical performance improvements are not used,
since an accountable kernel must schedule activities based on their worst case performance. However, it is
possible to use predictable variations of such techniques, such as an implementation of caching by making
local copies of globally accessible data. Third, resource sharing between different kernel components must
be organized such that the performance of one component depends on the resource but not on other
components accessing the resource.

* 3.1 Objects

A typical single or multi-thread object in CHAOS a r c has three components: shared and exclusive state,
the scheduler, and servers. The object's shared state is accessible to all invocations of the same object. It
is the task of the object's concurrency control and failure recovery to ascertain that multiple invocations
have a consistent view of the shared state. In contrast, copies of the object's exclusive state are used with
each atomic invocation, and this state is updated only upon invocation commit. Thus, the exclusive state
facilitates backward recovery, while the shared state will be used for forward recovery[31].

The object scheduler receives and schedules all invocations to the object. It employs some scheduling
policy to assign invocations to execution threads based on scheduling attributes (e.g., deadline) and in
cooperation with processor schedulers (e.g., to attempt to guarantee deadlines[23). All invocations to a
single thread object are scheduled and executed serially by its thread. Invocations to a multi-thread object
are scheduled to be executed by one of its large number of threads. Thus, multi-thread scheduling typically
consists of both the assignment of threads to processors[24 and the determination of an exact schedule
for the assigned thread on its target processor[33, 23]. Each scheduling decision is checked for legality
by the object's concurrency control algorithm, which must ensure object consistency when invoked by
concurrent, atomic invocations. The commit/abort protocol of the object ensures that a committed atomic
computation has a-permanent effect on the object, whereas the abort of an atomic computation leaves
either no changes (backward recovery) or results in the attainment of some equivalent state regarding this
object (forward recovery).

Server queues describe all available servers (i.e.,threads), each of which is generic in that it may execute
any of the object's operations (in contrast to CHAOS[25]) and has its own execution environment and
copy of the object's exclusive state.

Object representation. Three levels of abstraction exist in the CIHAOS a rc system. At the first and
lowest level, CHAOS a r c hides most of the details of the target architecture using a user-level multiprocessor
threads package|19] compatible with Mach cthreads 2. CIIAOSarc can execute on any machine on which
such a threads package exists, which currently are a Sequent Symmetry, a BBN Butterfly, and a non-shared
memory multiprocessor consisting of Intel 386 and custom processors. Two extensions of the threads
package are underway. First, the package is being extended to include real-time scheduling algorithms for
use by CIIAOS a rc [23]. Second, the package's lack of predictability (mostly due to memory management
in the underlying Mach operating system) and efficiency are being improved by its re-implementation on
the bare hardware of the BBN Butterfly.

2AU threads created by a single user process share the process' address space yet have their own execution states.
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The second level of abstraction in the CHAOSarc kernel implements primitive objects. This layer of
software is not visible to typical applications progranulers. It provides the notions of classes, objects,
invocations, and attributes. Attributes can be specified for classes, objects, or invocations. The primitive
layer does not associate semantics with attributes; instead, they are passed to special objects called policies
which interpret them and implementtheir semantics.

At the third level, complex classes, objects, and invocations are implemented by associating a policy
that implements the CHAOSarc semantics (called 'ca-policy') with primitive objects. It is at this level
that application programmers declare, instantiate and invoke objects for use in real-time applications.
Furthermore, non.real-time complex objects may be constructed at the third level, if desired. For exam-
ple, the object and invocation semantics of Presto[2], Clouds[5], ItPC and its derivatives[13], or remote
procedure calls may be implemented at this level.

Below, we briefly touch upon primitive objects and the manner in which complex objects are constructed
from them. This discussion provides a basis for the explanation of how CIIAOSarc 's different types of
invocation primitives are implemented.

Primitive classes and object creation. Jrom the kernel's point of view, each object is of some
well-defined class, which defines the internal state, the operations, and the components of the object. The
kernel provides constructs to create four different primitive classes3 - termed ADT, TADT, monitor, and
task (explained below), each of which may be created with an arbitrary number of components, thereby
resulting in a component hierarchy[26].

The creation of a class makes its code, internal data structures, and class descriptors available on the
target machine[261, so that instances of objects using such code and data may be created with:

objid = object-create (class, name, node, state)

This call creates an object pointed to by 'objid' of 'class' with string name 'name' on processor 'node'.
'State' is an optional pointer to an already allocated area of memory to be used as the object's state (a
null value 'state' results in dynamic allocation).

A primitive object of class AD T (abstract data type) is passive[25], has no components (unless explicitly
specified), and has a well-defined internal state and operations, which are executed in the address space
and by the execution thread of the invoker (caller). However, on the BBN Butterfly multiprocessor, classes
and object instances are created such that the invocation of an ADT object results in the access to a local
copy of the object's code and read-only data. Thus, ADT objects may be used to implement predictable,
small grain activities that are not performed in parallel with the invoker, such as an access to a data3 repository shared by some objects. Note that unlike the Clouds[5] system and for reasons of predict ability
and efficiency, such an access does not involve migration of the execution thread from the processor at
which the call originates to the processor on which the target ADT resides.

An object of type monitor is a passive object that allows exactly one execution thread at a time to
execute its operations. Monitor objects behave like Hoare monitors, with the exception that their explicitly
specified scheduling policies (for the selection of invocations to be executed) may differ among instances.

An object of class TADT (threaded abstract data type) is active and is used for the representation
of parallelism in CHAOSarC applications. A TADT object creates and starts a new execution thread for
the execution of each operation invocation (thread creation is very fast in the threads package used at
the lowest level of CHAOSarc ). In contrast to the CHAOS system[25] and for reasons of efficiency and
predictability at the second level of CHAOSarc , all such threads are executed on the processor on which
the object instance of class TADT has been created.

A CIlAOSarc task object is like an Ada task in that it consists of a single active thread of control and
has multiple entry points selected by this thread. However, unlike Ada, a CIIAOSarc task object may use
arbitrary policies for entry selection.

A complex CIIAOSarc object with internal parallelism is constructed from multiple instances of TA DTs.
The complex object's scheduler that selects one of the object's target TADTs for the execution of an
invocation may be represented with an ADT or monitor object (resulting in the execution of the schedulerin the address space of the invoker) or with a TADT or task object (resulting in the execution of thescheduling code by a thread potentially executing concurrently with the invoker). CIIAOS a rc makes this

'The term primitive objeci is used to denote an object of a certain primitive class.
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Ippossible by automatically re-directing each complex object's invocation to the ADT, monitor, TADT, or
task acting as its policy. Such policies queue and schedule invocations, check concurrency constraints, ajnd
finally invoke the desired operation of the target complex object 4.

Typically, either a monitor or a task object are used for policy implementation. This guarantees that
all scheduling decisions regarding the invocations of a single object are serialized.

Once constructed, primitive objects are invoked using the call:

object-call (object, operation, arguments)

This call is mapped (at compile time, if possible) into one of 'ADT-caI', 'TADTcall', 'monitor-call', or
'task-call' depending on the class of the 'object' parameter.

Complex objects. Neither threads nor primitive classes are visible to the typical application pro-
grammer. Instead, users employ complex objects with classes that are composites of primitive classes.
The complex objects currently available at the third level of CHAOSarc are (1) passive objects, which
are essentially ADTs (with or without component ADTs), are executed in the execution thread of the
invoker, and are invoked via procedure-call like 'object-call' operations, and (2) active objects, which have
their own execution threads and may be executed concurrently with the invoker. For performance reasons,
atomic invocations of passive objects are not currently available, whereas active objects may be invoked
atomically or non-atomically with one of six different types of invocations.

Additional object classes and invocation types are easily added to the complex level of CHAOSarc
by composing them using the primitive classes in its lower level. To illustrate the manner in which such
compositions of objects and invocation types are made in CHtAOSarc , we next describe the composition
of a 'typical' complex object composed of CHAOSarc 's primitive objects:

The user interface of any GHAOSarc object is its 'ca-policy', which is an ADT to which all invocations
of the CHAOSarc object are routed. Specifically, the 'ca.policy' ADT accepts invocations with
attributes specific to CHAOSarc (e.g., atomic, stream, ... ), interprets those attributes, performs
any necessary resource analysis and scheduling, and then initiates the execution of the body of code
implementing the invocation. For resource management, the 'ca-policy' may interact with other
components of the complex object or of the system (e.g., by interaction with other policies of other
objects). In addition, the 'ca.policy' ADT records (as part of its state) information about the object
it is managing. Examples of such information are the locking requirements of different operations
(which are statically specified in the class definition) and information about currently active/pending
invocations (which is dynamically manipulated). Furthermore, the 'capolicy' ADT implementing
the complex object has three component objects, which are described next.

* First, the 'resource-manager' component of the 'ca.policy' ADT is a task object that maintains and
analyses the resource requirements of invocations. The resources present in CHAOSarc are processors
and locks. Regarding processors, the resource manager interacts with the lower level scheduling policy
(at the thread level) to perform schedulability analysis and processor allocation for each incoming
invocation. For locks, the resource manager maintains information that is used by the concurrency
control policy to accept, reject, or abort individual invocations.

* Second, the 'servers' component of the 'ca-policy' contains the code for the complex object's invoca-
tions. Using this component, the 'ca.policy' creates the threads for code execution and performs the
invocation to thread mapping. Such threads can be either dynamically created at invocation time
or statically created at the time of object initialization.

* Third, the 'pool' component of the 'ca-policy' is used for implementation of queues for pending
invocations.

Note that the apparent complexity of complex object composition is not visible to the application pro-grammer. First, at runtime all required invocation parameters like deadlines and start times are simplystated as attributes to the complex object's invocations (the COLDarc language is described elsewhere[G]).

4 Policies are also used for implementation of the different invocation primitives available in C I AOSSa rc
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I Invisibly to the programmer, such attributes are automatically passed to the object's 'ca.policy', which
in turns uses them for invocations of the its component objects. For example, the 'resource manager'
component uses such parameters to schedule each invocation based on its internal concurrency control,
commit/abort, and scheduling information (reprcsented in its internal data structures). Second, the
construction of the complex object's structure from primitive objects is performed by declaration of a
CHAOSarc object with some pre-defined class, which results in the use of a suitable 'ca.policy' object for
invocation processing. Third, in [7) we showed that the apparent complexity of CIIAOS a r c 's complex
objects does not adversely affect system performance or predictability of execution. Next, we show the
manner in which different types of invocations may be composed using the CtIAOSarc mechanisms.

3 3.2 Object Invocations

A large variety of invocation primitives is required by typical real-time applications. In fact, and as already
shown by our earlier experiences with the CHAOS operating system[25], it is even desirable to allow users
to synthesize new primitives from basic building blocks[11] offered by the real-time kernel. CHAOSarc
adopts the building block approach, but offers additional functionality compared to the CHAOS operating
system. Specifically, in CHAOSar c , users can construct arbitrary invocation primitives by use of existing
building blocks as well as by creation of their own building blocks.

To illustrate, the implementation of alternate invocation types for a single target object is described next
(using the complex object in the previous section). Recall that all invocations of the complex object were
re-directed to the 'ca-policy' object that performed scheduling and concurrency control of invocations.
In order to accommodate the different invocation types offered for CHAOSa r c 's complex objects, the
'ca-policy' ADT also provides a number of 'operations' (entry points). Each invocation type is implemented
by one of these operations; invocations of a CHAOSarc object are re-directed to the appropriate operation
of the 'ca-policy' object. For example, consider an invocation of 'object$operation of a complex object:

INVOKE object$operation (parameters) INVID: inv[i]

top-level, atomic,

feedback : success+failure;

3 For this invocation, the specific operation of the 'ca.policy' object to be invoked is selected using
the default (not explicitly stated) attribute 'regular' of the invocation. The resulting stub for the regular
invocation of'objectSoperation' actually performs an invocation of the operation 'regular' of the 'ca.policy'
object associated with the complex object. This invocation uses an invocation block (parameter block from
the point of view of the policy object) containing the fields: 'object' and 'operation' concerning the complex
object being invoked, 'arguments' pointing to a parameter block containing the values of the parameters
being passed to 'objectSoperation'. 'Regular', 'top-level', and 'atomic' are attributes of the invocation; they
are passed a arguments to the policy object. Additional parameters, such as deadlines, are also specified
as attributes of the invocation.

The implementation of the object layer of CHAOS a r c pays detailed attention to achieving predictability
and efficiency, in each of the different stages of each invocation's execution[25]: name binding, queueing,
resource allocation, and termination. For example, regarding name binding, for each invocation, the
specified object and operation name are statically mapped to a pointer to an ADT acting as a address
block for the invoked object. In CHAOS a r c , this ADT's code is executed by the invoker and its execution
results in (1) the selection of some queue for posting the invocation request and (2) request queueing.
Predictability in (1) is achieved by disallowing dynamic binding and maintaining with each object a list
of pointers to all address blocks of the objects it invokes. This list is indexed by object identifiers that are
assigned by the language processor and are resolved when the object is initialized. As a result, once this
table is initialized, name binding may be performed in constant time. Similar implementation decisious
are made for queueing, resource allocation, execution, and termination of invocations.

I
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I 4 Conclusions and Related Research

CHAOSarc demonstrates the soundness of the notion of atomic computations in programming complex,
real-time, embedded applications. Specifically, atomic computations provide a natural paradigm for group-
ing multiple activities into related units (computations) with guaranteed properties (e.g., deadlines, mutual
exclusion, etc.). The mechanisms implemented by the CHAOSarc kernel provide a predictable, account-
able, and efficient basis for programming with real-time atomic computations. These mechanisms are
predictable because they have well defined upper bounds on their execution times that are (can be) deter-
mined before their execution. They are accountable because their decisions are guaranteed to be honored
as long as the system is in an application-specific "safe state". Finally, they are efficient because of their
low execution overhead, concurrency exploitation, and tightness of their guaranteed upper bounds.

The kernel mechanisms of CHAOS a rc may be used to compose different classes of objects[4, 2], as well
as different types of object invocations, at small performance penalties. This makes the synthesis of object
invocations possible[11].

CHAOSarc is an extension of CHAOS[25], offering atomic real-time computations as its major new
concept. However, CHAOSarc 's implementation and implementation concepts (e.g., classes and their use
in the construction of complex objects and new types of invocations) are entirely different, which leads
to some interesting properties of the CHAOS a r c system, such as its increased predictability compared to
CHAOS and its ability to support a much larger variety of invocation types and complex object classes than
CHAOS[8, 25]. In addition, CHAOS a r c is portable to any machine offering a Mach-compatible threads
package[19] (this currently includes SUN 3 and 386 workstations, the Sequent Symmetry, and the Encore
Multimax).

The fashion in which the CHAOSa r c kernel allows types of objects and invocations to be composed from
primitive objects offers substantially increased flexibility of operating system primitives compared to other
recent work in RPC[12]. Similar issues are also being explored with the PRESTO system[2] (PRESTO
was developed after CHAOS[25] and concurrently with CHAOSarc ). The Synthesis kernel addresses
adaptability at a lower level than CHAOSarc [14]. It is concerned with adaptations of code segments used
for the implementation of objects, whereas CHAOSarc adapts object and invocation implementations at
the level of primitive objects. The Spring kernel[30] differs from our work in that its primary execution
environment is a distributed system.

The SARTOR project[16] supports the partially automatic, static synthesis of time-constrained pro-
gram components, in more generality than the environment extensions of CHAOS (and now CHAOSarc ).

The future research of our group concerns the continued development of (1) the predictable CHAOSarc
kernel, (2) the CHAOSarc programming system based on the COLDarc real-time programming langage,
.nd (3) dynamic scheduling algorithms and models.

Acknowledgements. Yiannis Sarniotakis implemented the cthreads package on the Butterfly Plus as
part of his M.Sc. thesis at The Ohio State University. A robotics application running on the CHAOSarc

kernel was written in part by Peter Wiley (also at Ohio State as part of his M.Sc. thesis), and Prabha
Gopinath and Harold Forbes have implemented additional real-time programs now being used with
CHAOSa r c . Hongyi Zhou is designing and implementing a real-time threads package for CHAOSarc
and David Rosenbaum is implementing the bare hardware version of our cthreads package on the BBN
Butterfly Plus.
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I
1. Introduction

I The Spring paradigm [6] advocates predictable [5] real-time computing. The purpose of pre-

dictable real-time computing is to allow the timing properties of both individual tasks and the3 overall system to be assessed. The construction of predictable systems can be viewed from the bot-

tom up - predictable architectural features facilitate the construction of predictable OS software,3 which leads to building predictable real-time application software.

Among the architectural requirements for predictable real-time systems are bounded instruction

execution and memory access times, and bounded inter-process and inter-node communication

costs. These architectural features facilitate the construction of predictable OS features such as

bounded dispatching, scheduling and synchronization costs, bounded OS primitives, and bounded

3 code execution times.

The design and implementation of the Spring real-time multiprocessor kernel supports these

features. In this short paper we describe the Spring kernel support for bounded dispatching,

scheduling and synchronization.

2. Overview of the Spring System

The Spring system [6] is physically distributed and is composed of a network of multiprocessors.

Each multiprocessor contains one or more application processors, one or more system processors,

and an I/O subsystem. System processors offload the scheduling algorithm and other OS overhead3 from the application tasks both for speed, and so that this overhead does not cause uncertainty in

executing guaranteed tasks. All system tasks are resident in the memory of the system processors.

The I/O subsystem is a separate entity from the Spring kernel and it handles non-critical I/O, slow

I/O devices, and fast sensors.

Version 1 of the Spring kernel concentrates on the multiprocessor aspect of the Spring system.

This work is funded in part by the Office of Naval Research under contract N00014-85-K-0398 and by the National
Science Foundation under grant DCR-8500332.
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A Spring node is a multiprocessor consisting of up to five 1 Motorola 68020 based MVME136A

boards. The MVME136A boards support features which are typical of shared bus multiprocessors

- an asynchronous bus interface, architectural support for test-and-set like operations, and a local

memory. This memory can either be accessed remotely over the VME bus by (typically) another

processor, or locally by the processor which has mapped this local memory. Additional support

for multiprocessing is provided through the use of the MPCSR (MultiProcessor Control/Status

Registers). The MPCSR provides the ability to generate interrupts on a selected board, and/or a

simultaneous interrupt to multiple boards.

One node consists of a system board (which executes the scheduler) and multiple applica-

tion boards. The dispatchers, one per application board, are responsible for the dispatching of

application tasks. The scheduler and dispatcher processes are thus designed to run in parallel.

External events represent invocations of application tasks with arrival times, deadlines, resource

requirements, and other attributes. When a task arrives, the scheduler attempts to dynamically

Sguarantee that the new task will meet its deadline. As tasks are guaranteed, the scheduler adds

them to a system task table (STT); these tasks are also linked into dispatcher queues. Since the

STT resides on the system board, a dispatch queue reference performed by the dispatcher accesses

the shared bus.

Tasks are classified into three categories - critical, essential, and non-essential [61. The online3 guarantee is used for essential tasks. These tasks have deadlines and are important to the operation

of the system, but will not cause a catastrophe if they are not finished on time. It is necessary

to treat such tasks in a dynamic manner as it is impossible to reserve enough resources for all

contingencies with respect to these tasks.

The memory model underlying the Spring kernel design is a local memory model. Each processor
is equipped with a local memory module; every processor can also access all other memory modules
via a common bus. This models multiprocessor systems in which each processor has local memory

for task code and private resources, while at the same time there are other resources, such as shared
data structures, files, and communication ports, which can be used by tasks residing on different

processors. This model does in fact match the 68020 based multiprocessor architecture that Spring3 runs on., Since each processor has its own local memory, the assignment of tasks to processors, done

statically, determines which processor's memory the task code is resident. To avoid unpredictable

blocking of tasks due to resource contention at run time, our scheduling algorithm integrates tasks'

timing constraints and their resource requirements [4).

'Although eight slots exist on the backplane, only five boards can be used because of power supply limitations.
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3. Foundations of the Spring OS: Scheduler and Dispatchers

Predictability of the underlying real-time OS is necessary to achieve predictability of software

(application tasks) running on top of this OS. This section describes the design and implementation

of significant components of the multiprocessor real-time OS - the scheduler and the dispatchers.

To ensure predictability of application tasks, both the scheduler cost and the dispatching costs must

Sbe bounded. Version 1 of Spring supports a scheduler which executes in time O(N) r4] where N is

the number of tasks at the node. However, the execution time of the scheduler is capped to a fixed
worst case time. This will be discussed further in section 3.1. The dispatching cost is bounded

by a constant. Multiple dispatchers operate concurrently with no inter-dispatcher interference.

Dispatchers and the scheduler require concurrent access to the STT. Correctness of this access is

maintained via the use of critical sections, while predictability is ensured by constructing all critical

sections to execute in constant time.

The STT is a key data structure in the Spring kernel. Tasks which have been guaranteed areIplaced in the STT by the scheduler. The STT, residing in the system board memory, contains

dynamic task (invocation) information and information for OS management and scheduling. The

SOS management and scheduling fields include fields for maintaining scheduler data structures, as
well as fields for constructing linked lists which order the STT.

3 Concurrent execution of dispatchers is achieved by partitioning the STT based on the processor

to which tasks are assigned. Each per-processor partition of the STT is known as the dispatch queue.

Since a task is assigned to exactly one processor, the multiple dispatcher processes can concurrently

access their dispatch queues without interference (the intersection of all dispatch queues is null).

To facilitate correct and efficient dispatching, the STT is sorted according to the scheduled start

time of each task. This design provides a dispatcher with a constant time access to its dispatch

queue Go determine which task to execute next. Concurrent execution of the scheduler and the
multiple dispatchers is achieved by reserving a set of tasks for each dispatcher. The scheduler is not

free to reschedule the tasks reserved for the dispatchers. Thus each dispatcher has tasks to execute
while the scheduler is attempting to reschedule in order to guarantee a new task.

5 The method of partitioning tasks between the scheduler and the dispatchers involves the cal-

culation of a cutoff line. Once an upper bound of the scheduler's cost for guaranteeing a task is
determined, this cost is added to the current time to determine the cutoff line. All tasks having a

scheduled start time prior to the cutoff line are reserved for the dispatchers, and thus cannot be

rescheduled.5 The online guarantee is designed to allow concurrent operation with the multiple dispatchers.

When a new, dynamic task arrives, the guarantee algorithm is invoked. The online guarantee does

not alter the current schedule, it instead operates on copies of the task invocation information.

This convention facilitates the return to the original STT if the guarantee fails.
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3.1 Periodic Invocation of the Scheduler

Since the system processor is used for all system tasks, to ensure responsiveness for all system

level activities, the scheduler as well as other tasks are invoked periodically. (In addition, if possible,

the scheduler may also be invoked asynchronously upon the arrival of a new task.) Thus, the

scheduler executes for, at most, a fixed amount of time, namely for the computation time allocated3 to it, every period. Periodic scheduler invocation affects the design of the real-time OS which
bounds the task guarantee time, and the runtirme (online) decision of how many additional tasks

(extracted from the candidate queue, the queue of tasks waiting to be guaranteed) should be used

for the next guarantee invocation.

Given that the scheduler has execution time which is O(N), (the number of tasks being pro-

cessed), knowing the constant of proportionality and the fixed overheads, we can determine how

many tasks can be guaranteed by the scheduler during each periodic invocation. Suppose this is

Nmax. WAle call Nmax the "cap on the length of the STT". Suppose at a given time, the number

of tasks already in the STT is S. Then at most Nmax - S tasks from the candidate queue can be

considered for guarantee at this time. (Since the scheduler is invoked periodically, between two1 invocations, multiple task requests may get enqueued in the candidate queue.) Of course if not all

Nmax - S tasks are guaranteeable, how to choose a subset of this set for subsequent attempts is an

interesting question.

It is likely that the task invoking a nonperiodic task will impose a deadline not only on the

invoked task, but also on the guarantee. In addition, some invokers may desire to know how long

to wait to find out if the invoked task has been guaranteed or not. In the former case, whenever

the scheduler is invoked, it has to examine the candidate queue to see if deadlines on the guarantee

can be met given the discussion above. In the latter case, knowing the current length of the STT,

etc., it is possible to determine the scheduler's response time.

1 3.2 Maximizing Concurrency between the Scheduler and Dispatchers

' While the scheduler's execution time is a function of N, the number of tasks in the system

(capped by Nmax), the dispatcher execution time need not be dependent on N. Because the worst
case dispatching costs must be included in each task's worst case computation time, an efficient

I worst case design of the dispatcher is very important. In a multiprocessor implementation, worst

case blocking time (in our case due to mutual exclusion with critical sections) can be the over-
whelming cost of the dispatcher. Version 1 of the Spring multiprocessor OS uses dispatchers with

constant worst case computation times i.e., the worst case computation times of tasks are not

effected by the number of tasks in the system.

When an application task completes its execution, it must be deleted from the system. The

most natural implementation is to have the local (running on the same processor where the task

2
*!2



I
just completed) dispatcher delete the finished task from the system. This is not however the best
implementation when the predictability of the multiprocessor OS is important, since, in order to

maintain correctness with the scheduler, this design forces excessive mutual exclusive access to
STT by the dispatchers. Specifically, if dispatchers were allowed to perform the deletions, the

computation of the cutoff line would be required to be in a critical section (since pointers could
become invalid during this computation). The computation of the cutoff line requires O(N) steps3 if the tasks are in a linked list, or O(log N) steps if the tasks were arranged contiguously. Thus,
the scheduler could have locked the dispatch queue immediately prior to a dispatcher, causing the

dispatcher to wait for an amount of time that is a function of the number of tasks in the system.

This is unacceptable.

By having the scheduler, instead of the dispatcher, delete tasks from the STT, the worst case
computation time of the dispatcher can be significantly reduced. The mechanics behind the conven-
tion of task deletions performed by the scheduler involve separate maintenance of dispatch queue3 pointers by the scheduler and the dispatchers. When a dispatcher notices that a task has finished,
it implicitly marks the finished task by altering the head of the dispatch queue. The scheduler

maintains a separate (shadow) copy of the dispatch queue head which is never altered by the dis-

patcher. When the scheduler is invoked, it first deletes all tasks which lie between the dispatch
queue head and its shadow. Mutual exclusion is reduced to constant time - only modifications of3the dispatch queue head need be done inside a critical section.

4. Real-Time Semaphores - Low Level Support for Predictability

The system components that are potentially the most elusive to guarantee predictability are5 those low level components which are shared by the multiple processors. On a multiprocessor, both

shared memory and the shared bus connecting the processors fall into this category.

In a multiprocessor system, unless bus access time is bounded, any reference to remote memory

cannot be predictable. For this and other reasons (discussed in [3]), any predictable real-time
system which uses the asynchronous VME shared bus must be configured in round-robin mode.3 Round robin mode alone with processors busy-waiting on the semaphore (usually implemented with

test-and-set) is however not sufficient to provide bounded waiting. It can be shown '3] that one or
more processors can starve when two or more processors contend for a semaphore: It is possible

for a subset of the processors to perpetually exchange the lock, starving one or more processors
waiting for the lock.3 To solve this problem, we have developed solutions for the construction of real-time

semaphores[3] - semaphores which efficiently support bounded access. A software solution which

improves the bounded waiting solution given in [1] as well as a hardware solution have been de-

veloped. The real-time semaphore is based on the P() and V() operations ., using an extended
test-and-set like operation, test-and-set-or-branch. The construction of real-time semaphores is

2
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based on the Deferred Bus Theorem (see [3] for the proof of the theorem):

If the total worst case non-bus master time of the busy-wait loop (in PO) is less than

the best case bus master time of the release instruction, and if processor pi is the closest

processor (in the round robin ordering) busy-waiting for semaphore s when processor
pi releases s (in VO), then pi will be the next processor to acquire s.

Operations for enforcing mutual exclusion operations such as P() and V0, if constructed in a

bounded fashion, can provide the framework for other, higher level, bounded operating systems3primitives. This boundedness forms a basis for the predictability of the Spring real-time multipro-

cessor OS.

5. Performance

I The performance of the scheduler (running in a 16 MHz. 68020) in Spring version 1 is illustrated
in figure 1. Both the average and worst case computation times of the guarantee algorithm and the

overheads are plotted. The costs of the guarantee algorithm are separated from the costs of the

overheads, the total scheduler cost being the sum of the two. The overheads consist of scheduler
activities before and after invocation of the guarantee algorithm (such as the computation of the

cutoff line and task deletions). The guarantee algorithm, as described in [4], is invoked with no

backtracking for a system with seven resources.

I As discussed in section 3.1, the periodic invocation of the scheduler imposes a fixed computation

time for the scheduler to run. Depending on the selected period and length of this fixed computation

time, a cap on the maximum number of tasks which are guaranteed in this fashion (using the

heuristic guarantee algorithm described in [4]) will be derived. Practical optimizations are currently
underway, and include alternative scheduling algrrithms, and restricted data structure access. One

scheduling optimization would be, instead of performing a total reschedule of all tasks in the system,

attempting to insert a single task into the existing schedule. The examination of only portions of

sorted system tables is an area of optimization pertaining to restricted data structure access. By
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speeding the guarantee, these optimizations may allow us to deal with more tasks than the more

general techniques which have been implemented.

* 6. Conclusion

Our approach to constructing a real-time OS is to achieve predictability from the bottom up.

We have discussed how bounded access to a shared bus facilitates the construction of real-time
semaphores. Real-time semaphores in turn form a foundation for the construction of a concurrent,

predictable real-time multiprocessor OS. At the next level, the predictability of user level tasks is
facilitated by the predictable OS. Subtleties arising in supporting the online guarantee complicate

the construction of a predictable multiprocessor OS which is concurrent. These subtleties are

resolved in part by offloading activities from dispatcher to the schedulers, integrated with judicious
use of critical sections by the real-time OS. The feasibility of this approach has been demonstrated3 with the shared bus multiprocessor implementation of Spring version 1.
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I Introduction
During recent years, there has been a major movement in the computing world towards standard,

open systems based on the UNIX operating system. Key attractions of standard, open systems include
vendor-independence, protection from technological obsolescence, preservation of software investment,
availability of off-the-shelf applications software from independent suppliers, availability of trained
programmers familiar with standard environments, and connectivity between various dissimilar computers
within the user organization.

By contrast with this trend towards open, standard platforms, the world of real-time computer
applications is fragmented: several proprietary operating systems and kernels are being used with no
single software environment accounting for a significant fraction of the applications.

Real-time applications typically require computers to interact with external equipment in "real-time";
this usually involves being able to respond very quickly to external events with the requirement for
response time varying from a fraction of a second down to microseconds. Typical real-time applications
involve control or monitoring of systems by computers, the collection of data in real-time, or real-time
simulation of complex systems.

In more traditional computer applications that access data files, print reports or deal with interactive
users, occasional delays of several seconds or longer are usually acceptable. With real-time applications,
on the other hand, the computer needs to respond within a certain amount of time, often in the
millisecond or microsecond range, in order for the system to function correctly. Most important of all,
this response delay must be deterministic.

There has been a strong and growing interest in UNIX for these real-time applications. All of the
benefits of open systems mentioned above are equally applicable to real-time applications. UNIX, which
is the only "open" multi-tasking operating system that has been ported to a large number of CPU
architectures and is available from a large number of vendors, is a very attractive candidate. The3 development environment of UNIX is also quite popular among software developers.

Problems With UNIX For Real-Time
Unfortunately, UNIX was never designed for real-time and while it is a fine general-purpose time-

sharing system, it has serious limitations for real-time applications. It introduces large delays for high
priority tasks that need to respond to events external to the computer, and moreover, this delay is highly
variable and unpredictable. Since UNIX is designed to support a number of different users at the same
time, it tries to be fair to all of them, and it does not allow direct control of critical shared resources.
In a real-time application, by contrast, the programmer or user needs to have much more direct control
over the system, including absolute control over priorities and which task can run on the CPU at a given
time. Most important of all, the system must be able to respond to critical external events very quickly
and in a predictable amount of time.

Earlier Attempts At Real-Time UNIX
In spite of the above limitations of UNIX for real-time, the attractiveness of UNIX is so great that

many attempts have been made to address this "real-time UNIX" need. However, until now, none of
them have been entirely satisfactory.

Several efforts have been directed at modifying the UNIX system from AT&T to improve its
suitability for real-time applications. In real-time UNIX systems of this kind, the scheduler is typically
reworked to implement a scheduling algorithm suitable for the needs of real-time tasks, and preemption
points are inserted into the longer system calls to reduce the latency for context switches. Several other
features of importance for real-time applications are often added such as memory locking, timer support
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and others. Finally, the system is put through a process of performance tuning to improve systemI responsiveness for real-time.

Requirements For Real-Time UNIX
For a real-time UNIX compatible system to gain widespread acceptance, and to provide all the

potential advantages of an open, standard system, it must satisfy a basic set of requirements in two
major areas: UNIX compatibility and real-time performance:

UNIX Compatibility
Such a system should behave, look and feel like UNIX; moreover, it should be positioned similarly

to UNIX in the sense of being a truly open, portable system that will follow the future evolution of
UNIX including supporting mainstream UNIX extensions in areas like the user interface and networking.

Full UNIX compatibility means the ability to run any program that is written to be portable across
UNIX systems; such a system should provide at a minimum source level compatibility with the standard
AT&T System V Interface definition (SVID) and the emerging IEEE POSIX 1003.1 standard. Source
compatibility with the Berkeley 4.3 flavor of UNIX is also very desirable. Future versions will have to
track the dominant UNIX standard as represented by system V.4 and beyond from AT&T and future
offerings from the OSF as well as the POSIX 1003.4 specification for real-time extensions to UNIX
when that standard is adopted. In addition to the kernel, the shell and all important utilities have to be
available and be compatible, although the requirements are not quite as rigid in terms of applications
portability.

Source compatibility essentially means supporting all UNIX system calls either directly or through
library functions. Beyond source compatibility, to provide the full benefit of a standard, open system, it
is important to support binary (or executable) compatibility across implementations on the same CPU
architecture where an applications binary interface (ABI) has been defined such as for the 80386 and
the 680x0. Binary compatibility provides the opportunity for "shrink wrapped software" from third party
software manufacturers, which can be run by the user without having to obtain the source and recompile

I it.

Real-Time Performance (And Functionality)
To gain widespread acceptance, real-time UNIX solutions have to provide the real-time performance

that users expect from the leading proprietary solutions. So long as this performance gap is large, the
perception that UNIX is not adequate for real-time will persist and users will continue to use
proprietary solutions.

Real-time applications require a computer to react to periodic or external events within a bounded
amount of time. The real-time response of the program running under an operating system depends not
only on the speed of the hardware and the efficiency of the compiler, but also on the interrupt presprse.
and task re provided by the operating system. Interrupt response is the delay between an external
event and the invocation of the associated interrupt routine. The interrupt routine records the event,
buffers data, and requests that the task that must respond to the event be scheduled to run. If this is
the highest priority task runnable, it is dispatched after a context switch. The task response is the delay
between the event and the task actually beginning its execution. The task response is important becauseit is the task that can save data to mass storage, perform control strategies, update operator displays,etc. The interrupt response and task response delays need not only to be small but also deterministic --
it is the worst case value of these parameters that have to be used by the system implementor.

Real-time applications often have to interact with many external devices such as sensors,
analog/digital convertors, motors, solenoids, etc. Thus a real-time system should provide an efficient
interface to these devices. It should be easy to write device drivers in a higher level language such as
C. Overheads for accessing these devices should be kept to a minimum, and interrupt latency should beIlow.The tasks implementing a real-time application must be able to communicate efficiently with each
other to coordinate their operation. The system should support shared memory segments across tasks, asI well as a rich set of interproccss communication mechanisms such as semaphores, signals, named pipes
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3 and sockets. Since many applications reqnire an embedded system without a hard disk, it must be
possible to put both the operating system and the application in ROM.

LynxOS: Real-Time UNIX From The Ground Up
With the above requirements in mind, the design of LynxOS focussed on the twin objectiveness of

preserving full UNIX compatibility while providing superior real-time response and enhanced I/O3 facilities.

Designing Real-Time Performance Into UNIX
The design of LynxOS is heavily focussed on achieving excellent real-time response without

compromising on UNIX compatibility. LynxOS uses a method of process scheduling more applicable to
real-time, and allows preemption in the kernel to improve task response. Task and interrupt response
are further improved by performing any extended asynchronous processing at normal process priority
levels instead of interrupt levels.-

Like UNIX, LynxOS is a multitasking system with priorities associated with tasks; the task with the
highest priority is normally the one that runs on the processor. Like most time-sharing systems, the
UNIX OS determines this priority level for each task. The user may provide a priority level (nice), but
this is only used as a guideline - the kernel uses this information along with other information such as
the CPU time used by the task, what I/O the task is using, etc., to determine the actual priority to be
assigned to the task. In a real-time system like LynxOS, on the other hand, a critical task must be
dispatched as soon as possible after the notification of an event. The user must be able to set the
absolute priority of the task and not have it modified by the OS.

Kernel Pre-emption
When a high priority task is ready to run, a lower priority task running on the processor has to be

preempted. However, the operating system has to protect its data structures from being partly accessed

by one task, then corrupted by a second task that has preempted the first. In the design of UNIX, this
problem is solved by disabling preemption whenever the system is executing in the kernel. A low
priority task executing a system call cannot be preempted by a higher priority task until it completes the
system call or is blocked for I/O. Many system calls, such as FORK, can take a long and unpredictable
amount of time. This is one of the major sources of the poor and unpredictable task response time of
UNIX.

The LynxOS kernel is designed to be preemptible at almost any time to avoid this problem; two
techniques are used to protect kernel data structures. Most kernel data structures are specifically
designed to be accessed during very brief periods, and they are left in a safe state at all other times; it
is only during these brief access periods that task switches are disabled. Where this is not possible,
only parts of data structures are locked, using counting semaphores, so that no other tasks can corrupt

i them. ;,_ . .. I

Process Synchronization
In UNIX, when a signal has to be delivered to a process, or the process needs to be pre-emptcd,

this is accomplished by invoking an asynchronous software trap (AST), which is a software settable
interrupt at a priority level below all hardware interrupts. The AST is taken when the process enters
user mode, after all hardware interrupts have been handled.

In LynxOS, two ASTs are used to invoke delivery of signals and task pre-emption, respectively. The
signal AST (ASTI) is at the lowest priority, and is disabled during system calls so that it is only taken in
user mode. Since the LynxOS kernel is pre-emptible, the pre-emption AST (AST2) is at the next higher
priority level, and it is normally enabled during a system call. To protect a critical kernel data structure,
the processor priority is simply raised above the level of the AST2 while the data structure is being
accessed. Where the underlying hardware does not support ASTs, they are simulated in software.

When a kernel data structure that was locked is released, the UNIX kernel wakes up every task
that was waiting on the associated semaphore. By contrast, the LynxOS kernel only wakes up the
process at the highest priority waiting on the semaphore; if there is more than one waiting task at this
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priority level, the first one that waited on the semaphore is selected.

Impact Of Interrupt Handlers On Real-Time Response
The handling of interrupts is another area that has major impact on the responsiveness of the

system. Since all interrupt handlers run at a higher priority than regular tasks, the worst case task
response of the system can be no better than the execution time of the longest interrupt handler. In
time sharing systems like UNIX where all asynchronous processing is done in interrupt handlers, this can
be quite long. The standard UNIX terminal driver does all its line editing functions at interrupt level.
On a system with a memory mapped screen, such as the console on an 80386 AT-compatible PC, the
entire screen is scrolled when a newline is echoed in an interrupt routine. A streams driver can improve
this somewhat. A stream is an asynchronous computation path that runs at the level of the lowest
priority interrupt on the system. This improves the response for higher priority interrupts, but this
processing still has a higher priority than any task.

LynxOS uses a technique based on kernel threads to minimize the impact on real-time
responsiveness of interrupt handlers that require significant amounts of processing. The interrupt handler
itself only performs tasks that are essential, such as buffering critical data or handshaking with I/O
devices. All other processing, which would be performed by the interrupt handler in a normal UNIX
system, is executed by a kernel thread, or lightweight task. Kernel threads have priorities like user tasks
and they are scheduled along with normal tasks. Thus asynchronous processing can be done at a lower
priority than critical real-time tasks. A kernel thread is used, for example, for asynchronous terminal
processing; its priority is set to the same level as the highest priority task using the terminal. With the
LynxOS approach, high priority tasks implementing real-time functions run unaffected by line editing at
terminals being used for lower priority applications such as program development.

I Expanding The UNIX 1/0 System
Time sharing systems including UNIX are designed assuming a small number of devices that are

relatively stable: a typical system supports a few disk drives, some terminals and a printer. By contrast,
real-time systems must support a much wider variety of devices including digital I/O boards,
analog/digital converters, servo motor controllers, etc.. Further, users frequently need to interface to new
devices.

,LynxOS extends the UNIX unified 1/0 system to provide a common interface for many additional
classes of devices. For example, LynxOS includes a utility called SAt, similar to UNIX's STTY, that
provides a uniform way to control analog/digital convertor boards.

In many real-time systems there are a large number of input channels for a given class of device.
Having an open file descriptor and reading from each channel is inefficient and runs into limits on the
number of open channels for a task. In a system with 40 temperature sensors, it would be slow and
messy to have 40 open files. Plus, in many control applications, inputs must be read simultaneously.
LynxOS solves these problems by allowing channels to be grouped. All channels in a group can be read
and written simultaneously through a single file descriptor.

LynxOS device drivers can be dynamically loaded and unloaded, greatly facilitating the development
of drivers for new devices.

I Contiguous Files
To provide the high disk throughput required by many real-time applications such as high speed

data acquisition, LynxOS supports contiguous files. The space for a contiguous file is preallocated within
the normal file system at file creation time. All subsequent accesses to the file use normal UNIX calls
like read and write; however these calls perform raw I/O to the ile bypassing the cache and the data is
transferred directly using DMA from the dik interface into the user memory. This makes it easy for
users to actually achieve the maximum disk throughput provided by the hardware for real-time
applications.
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I Non-volatile Disk Cache
LynxOS uses a disk cache just like UNIX to provide fast throughput for multiple tasks accessing

disk files. Since the cache uses a write to, rather than a write through, algorithm for maximum
performance, UNIX must flush the cache every 30 seconds or so just in case there is a power failure.
Even so, data can be lost and the disk corrupted. So when a UNIX system is brought up it does an
exhaustive check of the file system on disk and corrects any problems. This can be a serious problem in
real-time applications where the system must come back on line as quickly as possible. LynxOS supports
a battery backed-up disk cache, if supported by the underlying hardware, to prevent a loss of
information. In-core inodes are saved in this cache in addition to recently used disk cache blocks. When
LynxOS is booted, it checks the cache and knows the exact state of the cache prior to the last time that
the system was turned off. Only if the system was in the middle of a disk write does it do a file systemcheck. So in most cases, the system is up and running right away without the 5-15 minute delay of atypical UNIX system. This mechanism also eliminates the need for periodic disk synchronization.

I ROM-based Systems For Embedded Applications
For many real-time applications, a hard disk or network is unavailable or unsuitable, requiring the

system to operate out of ROM. A ROM-based system provides greater ruggedness than disk-based
systems, as well as savings in space, power and cost. A ROM-based system also minimizes boot-up time.
Standard UNIX requires a block device such as a hard disk for its file system and for booting; also the
kernel is rather large for most ROM-based applications, typically requiring a megabyte or more of
memory.

LynxOS is designed to operate out of ROM, if required, and is compact enough to be placed inROM along with applications code. Depending on the configuration, the LynxOS kernel requires from

130 to 160 kilobytes of memory for code and initialized data. One can build embedded systems with as
little as 256 Kb of ROM and 256 Kb of RAM. A ROM-disk driver allows a ROM to contain the
LynxOS file system and to be used as the default root and boot device. In addition, both the kernel and
executable programs can be executed directly from ROM. A special magic number identifies such
programs; when the file is executed, the daLa segment is loaded into RAM and space for uninitialized
data is allocated, but the code segment in the ROM is mapped directly into the process's address space.

Conclusion
The LyrixOS project has demonstrated the feasibility of using standard, open systems for real-time

applications, and it also demonstrates a major potential advantage of the standardization activity that is
under way for UNIX through the IEEE 1003 committee and other bodies. A real standard supports
multiple implementations from different vendors to the same interface specification. This gives the users
multiple choices and promotes competition between vendors which leads to the best value for the user.
It also provides alternative versions optimized for different environments.

I
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Research in Time- and Error-Constrained Database Query Processing

Gultekin Ozsoyoglu , Z. Meral Ozsoyoglu . and Wen-Chi Hou

I ABSTRACT

One may define a time-constrained database as a database that has strict timing constraints in (a) responding to

queries. (b) processing transactions, and in (c) database maintenance such as integrity enforcement, view management. and

database insertions, deletions, and updates. A time-constrained query has the form of "get L - " 'irmation x in no more than

t time units". Presently. there is no comprehensive time-constrained DBMS methodology available.

Another type of queries is the class of error-constrained queries. A typical query may be "evaluate the query Q with

the error function e(Q) being less than a certain bound". In such a case, the user implicitly permits a reduction in the evalua-

tion time of the query by agreeing to a bounded error in the answer of the query. Time- and error-constrained queries may

occur in centralized/distributed, and single-user/multiuser environments.

This position paper describes our research directions towards a general methodology for processing arbitrary tune- and
error-constrained database queries.

3 1. Introduction

As the database technology matures, it is being integrated into larger systems where there are new require-
ments on the database management component of the system. We think that real-time, near-real-time, and

time-constrained computing systems can benefit from having a database management system (DBMS) as a com-
ponent, and have new DBMS requirements. Presently, thcre is no comprehensive real-Lime, near-real-time, or3 time-constrained DBMS methodology available.

One may define a time-constrained database as a datab.se wi % th the new requirements that it has strict

(possibly, real-time) timing constraints in (a) responding to querics. (b) processing transactions, and in (c) data-

base maintenance such as integrity enforcement, view management, and database insertions, deletions, and

updates. A time-constrained query has the form of "get the information x in no more than t time units". Below3 we list two application areas that may utilize time-constrained databases.

Area 1. Databases Used in Manufacturing Environments The A)-called "automated factory of the future" uscs

various databases at different levels of factory automation. At the lowest level, the factory floor level, there arc
programmable logic controllers (PLC) which are special-pur-x),c omputers (or, sometimes, modified personil

computers) that control manufacturing processes using the prscrnt and the past history of some "input" manuii.i -

turing processes. Presently, PLCs maintain and manipulate dt.ti ulit input processes in very rudimentar\ lorm,

because the data manipulation is explicitly coded by the u~crN. and there are sumct Liming constraints on

responses. Clearly, a main-memory time-constrained datahJ,'' , iem with the ability to respond to time-

constrained queries can increase the capabilities of PLCs. and caic users* jobs.

Area 2. Databases Used in Scientific Applications. In some ,cientitfic experiments and applications, the data

t This research is supponed by the Nauonal Science Foundation under Grin' ItCR XN)554. and IRI-8811057.
I Department of Computer Engneenng and Science, Case Western Reser'e Lnicrmty. Cleveland, OH 44106

- Department of Computer Science, University of Southern Illinois at CarNnJe.Ic. H,1901
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gathered is so large that "processing the data on-the-fly" during the execution of an expenment/transaction is3 needed. Processing the data on-the-fly puts a time constraint on query evaluation, i.e., queries must be procesNed
in fixed time-units and, for some experiments, in real-time. Also note that, in such an environment, the querc,,

are repetitive, and occur periodically.

Time-constrained queries that we have described above have the "hard" time constraint which is not to ho

missed. There are other applications in which the time constraint is "soft", i.e., the time deadline can be missed

in evaluating the query, but as time passes, the value of the response to the query diminishes. Another type ot

queries is the class of error-constrained queries. A typical query may be "evaluate the query Q with the error

function e(Q) being less than a certain bound". In such a case, the user implicitly permits a reduction in the

evaluation time of the query by agreeing to a bounded error in the answer of the query. Time- and error-3 constrained queries may occur in centralized/distributed, and single-user/multiuser environments.

For the last two years, we have been working on the problem of processing time-constrained aggregate

relational queries. This paper summarizes our approach for building a methodology to process

(a) time constrained ad hoc queries that produce relations,
(b) time constrained periodically occurring queries, and3 (c) error constrained queries.

2. Previous Work on Aggregate Queries

3 Consider a single-user database, and the problem of processing an aggregate database query within a gi. en

time quota. That is, we would like to process the query "evaluate f (E) within T time units" where f is an

aggregate function (e.g., SUM, COUNT, AVERAGE) and E is an arbitrary relational algebra expression (of the

relational database model).

Our approach is as follows. First we perform an a priori analysis and locate "good" (i.e., unbiased, con-3 sistent, etc.) estimators f(E) of f(E) for various E expressions. When the query is posed, due to the lack of

time, instead of evaluating f (E), we choose an estimator, say j (E), and evaluate the statistical estimator I fE

by sampling from operand relations in E. For the evaluation, given the time quota T, we decide about the si/c,

of the samples, obtain the samples, and evaluate the estimator f (E). If, at the end of the evaluation of f (E).
there is time left then we perform a second stage of obtaining additional samples and improving the estimate3 for f (E). We continue improving the estimate by additional stages until the time quota is completely used.

The statistical approximation approach summarized above needs to be revised when the database system

a multi-user and/or a distributed system. In such cases, it may not be possible to satisfy the Lime constraint.s t

all user queries, and a compromise is needed to decide which user quenes get processed within their time quo-
tas. Also, when the query is not an aggregate query, different approaches are needed. These new approachcN

may or may not use estimation.

In [HoOT 88, HoOz 90], we develop a general methodology to obtain consistent and unbiased estimator,
for the aggregate query COUNT(E), where E is an arbitrary relational algebra expression. The basic theorei,.,I
framework developed is based on the simple random samphng method, and then extended to a cluster samplic

plan for efficiency considerations. Extensive performance evaluation of the estimators using a prototype s.,'w)

are reported in [HoOz 90].

Given a COUNT(E) query and a time quota, we discuss in [HoOT 89] the issues of
(i) when to stop processing the query (i.e., the stoppin; criterta) to meet the time constraint, andI 33
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(ii) how to use the time quota efficiently (i.e., the time control strategies).3 The time-control algorithm determines the sample size from each operand relation such that the estimator f (E)
can be evaluated with a desired probability within the given amount of time quota. [HoOT 89] introduces sLa-

* tistical and heuristic time control strategies, and compares them for the control of the risk of overspending the
time quota.

A disk-based database management system that was previously developed in our department is revised,
and used [Hou 89] in implementing and evaluating the methodology of [HOOT 88, HoOT 89, HoOz 90]. We
have just revised and converted the disk-based system into a main-memory-only database management system
[Liu 89], and started testing our methodology in this environment.

3. Related Work

In the last two years, a number of research results about "real-time databases" have started to appear in the

literature. In general, these publications define a "real-time database" as a database in which transactions have
severe response time constraints, that is, they must be completed within their deadlines. As the transaction com-3 pletion by the deadline is dependent on the workload of the system and is not possible for all transactions, the
goal changes. For example, in [AbGM 881, the goal is to minimize the number of transactions that miss their
deadlines. Below, we briefly summarize the approaches taken by different researchers.

(a) Redesigning the conventional database systems or their components to obtain high performance
[Sing 88],
(b) Introducing parallel query processing, filtering and data flow control to improve the performarice

[Bult 88],
(c) Revising techniques from operating systems in the areas of CPU scheduling, transaction manage-3 ment, deadlock management, buffer management, and disk I/O scheduling.

In CPU scheduling, the algorithms investigated [HSTR 89, StZa 88, AbGM 88, AbGM 89] include most-

critical-transaction-first, by-criticalness-and-deadline, least-slack, and first-come-first-serve. In the case of

resource conflicts among transactions, the conflict resolution techniques investigated [AbGM 88. AbGM 89.
BMMU 89, McDA 89, Daya 88, Sing 88, LinL 88, HSTR 89, StZa 88] are first-come-first-serve, wait, wait-
promote, high-priority, conditional-restart, dynamic parameters, virtual clock, deadline-first-then-criticalness.

deadline-criticalness-remaining-execution-time, criticalness-only, value-function, and nonserializable-but-
consistent. As conflict avoidance techniques, [BMMU 891 investigates preanalyzed transaction classes. As tran-3 saction wakeup policies, [HSTR 89] investigates max-virtual-clock-time, max-combined-parameters, min-
deadline, and highest-criticalness policies. For transaction commit policies, [AbGM 88] considers the polic Of

log-on-separate-disk-dirty-pages-in-buffer. As transaction restart policies, [HSTR 89] invesuigates nonzero.
value-restart, restart-with-increased-priority, and restart-if-leasible For deadlock resolution techniques amonc

transactions, [HSTR 891 investigates transaction abortion for transactions with the longest-deadlinc. earliest-
deadline, least-criticalness, or tardy/feasible-with-least-criticalness,. Among buffer management techniques. 1C.'.

89] considers priority-LRU, and priority-DBMIN, and [AbGM 881 considers random-replacement. For dt.ok
scheduling techniques. [AbGM 88] investigates highest-priority, and [Call 89] investigates scan-within-priortt

m groups.

4. Current Work

With the exception of section 4.5., we consider only centralized, single-user databases. We think that thi,
is a necessary step which should precede the investigation of real-time, centralized/distributed, multi-user3 34
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da'abases.

4.1. Queries that Request Relations

If the response to a query is not a single value (as in aggregate queries) but a set of tuples, what type and

how much information can we give to the user? Three possible approaches are

(a) to return "profile" statistics about expected values for output attributes,3 (b) to estimate either univariate or multivariate distributions of output attributes in a functional form

with estimated parameters,

(c) develop incremental, "subquery" evaluation methodologies.
Below we elaborate only on (c), which is the approach that we are investigating.

A. Relation Fragmentation Lattices

Consider a relation r with attributes A, B and other attributes. We fragment r using a set of selection con-

ditions, i.e., we form a relation fragmentation lattice such that each fragment is assigned a priority. A very sim-3 pie lattice is given below.

r preferred

aAZ,5(r) ca= 10(r) strongly preferred

I OA> 5 ,nd B=i0(r) required

3 where a denotes the selection operation of the relational algebra, and "required", "strongly-preferred", and "prc-

ferred" denote the priorities. Relation fragmentation lattices are maintained independent of users' queries.

Our approach is that, in a given query with relation r, we use fragments of r (or their combinations) to

evaluate the query in an incremental fashion. To illustrate, assume that the relation r is split into two fragments.

say frI and fr 2, and the query Q(r) is converted into Q'(jr1 ) u Q"(fr2 ). We make sure that, by our choices ol

Q' and Q", the output tuples of Q' and Q" are disjoint, and we avoid duplicate tuple elimination in the set union

operation u. (Duplicate climination in the set union operation of relational algebra is very costly (since it

involves the sort operation).) This evaluation process is guided by

I 1) an optimization process involving levels in hierarchies, e.g., required/strongly-preferred/preferred

fragments,

2) multiple relation fragmentation lattices, and

3) "answer categories" with respect to certain "error functions", e.g., better/locally-better/globally-bettcr

answers.

U B. Incremental Evaluation of Periodically Occurring Queries

We devise new techniques for "periodically occumng queries", i.e., those queries that are repetitively cxc.

cuted at certain Ume points. In such cases, changes in each input relation r of a query Q are stored in Ar, an

incremental relation. Then, the query Q(r u A) is converted into the union of two (disjoint) quenes Q(r) and
Q'(r, Ar), where Q(r) is already computed in the previous step, and Q'(r, Ar) can be computed fast and within

the time constraint.
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When Ar contains only tuple insertions and the query Q is monotone (i.e., for larger relations, Q produces

larger output), incremental evaluation of Q is straightforward. When Q is nonmonotone (e.g., when Q contains

the set difference operator), new techniques need to be developed.

I C. Subexpression Fragmentation Lattices

In addition to relation fragmentation lattices, the user of a query may choose to define a fragmentation lat-3 tice involving the attributes of a subexpression of the query (e.g., after a join operator in the query). This per-

mits an incremental time control in processing the rest of the query.

Unlike relation fragmentation lattices, subexpression fragmentation lattices are built during the query

evaluation time since we assume that the queries are generally ad hoc.

D. Incremental Maintenance of Lattices

A methodology is being developed such that the relation fragmentation lattices are maintained (indepen-

dently of queries) using incremental evaluation techniques. Also, when a query is periodically occurring, its
subexpression fragmentation lattices should also be maintained by incremental evaluation techniques. Please

note that the techniques to incrementally maintain relation and subexpression fragmentation lattices are different

since the latter involves arbitrary relational algebra operations and the former involves only the selection opera-

tor.

E. Output Tuple Classifications

When a query cannot be evaluated completely at the end of a given time constraint, we can still classify

and use some of the "currently produced" tuples. One classification may contain the "definitely in the output"
and the "possibly in the output" classes. For example, consider the query Q which is of the form E 1 u(E 2 - E3),

where E1, E 2, and E 3 are relational algebra expressions. Assume that, at the end of the time quota, E1 and E,

are completely evaluated, but E2 - E3 is partially evaluated (and is therefore useless). In such a case, the tuples

of E, are of type 'definitely in the output", and the tuples of E2 are of type "possibly in the output". Another

classification may be a probabiistic classification which attaches 'output inclusion" probabilities to tuples.

4.2. Estimating Error-Constrained Queries

Consider a situation where a query response has to sausfy a given error constraint. The issues to be inves-

tigated are how to determine the sample sizes and how to satisfy the error constraint requirements efficiently.3 The estimation of the sample size needs the knowledge of the characteristic of sample units. Unfortunately, this

information is usually unknown.

Similar approaches to (HoOT 89], e.g., using prestored staustics and using run-time estimations need to be

considered for estimating the sample size. For the run-time approach, instead of assuming a large variance of
sample units, we may assume a minimum ("reasonable small" perhaps) variance at the first-stage evaluauon.3 Taking an equal size of sample from each input relauon may not be the best way to satisfy error con-

straints. We need to identify those factors that may influence the precision of estimations. For example, a pos-

sible candidate may be the selectivity of an operation.

4.3. Estimation of COUNT(E) Queries3 36
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A. Different Sampling Methods

Systematic sampling [Coch 77) selects sample units at a fixed interval. It has the advantages of being
simple and producing more evenly spread samples than the simple random sampling (and hence, probably has a
better precision). The disadvantages are (1) there is no trustworthy method for estimating the variance of the
estimated mean, (2) the performance of systematic sampling depends on the properties of the population. It may
be extremely precise for some populations and it may be less precise than simple random sampling for others.

The second- (or multi-) stage cluster sampling is an alternative when a disk block contains tuples with
similar or duplicate information. That is, instead of using all the tuples in a block, only a random sample of the
tuples in a block may be used for economic reasons.

In stratified random sampling, the population is first divided into strata based on certain properties, i.e., the
values of certain set of attributes that are of concern to us, and then a random sample is taken from each stra-
tum. The stratification may produce a gain in precision in the estimates of criaxaLtenstics of the whole popula-
tion.

I B. New Estimators

The ratio estimator [Coch 77] usually gives biased estimates. However, it is quite promising since it gives
a smaller variance of the estimate (when the size of sample units arc different) compared to the unbiased one in

[HoOT 88]. Different sizes for sample units may occur due to insertions, deletions or variable sizes of tuples in
secondary storage blocks.

In [HoOz 90], estimation of the number of classes of identical tuples in a multi-set" is needed after a pro-
jection operation of relational algebra. To this end, we have used Goodman's estimator [Good 49]. When the
sample fraction is low, Goodman's estimator is unstable for a population with heavy duplicates. We need to
find stable and good estimators for the projection operation.

4.4. Estimators for Other Aggregate Functions such as Sum or Average
_ The estimation of SUM(E) can be done exactly the same way with the estimation of COUNT(E)-exccpt

when there is a projection operation of the relational algebra. Projection may produce (and later eliminate)

duplicates, and duplicate tuples make the inclusion probabilities of different set of tuples in the sample unequal.
and create problems in counting the total number of resulung tuples.3 As for AVERAGE, estimators for union, difference and projecuon operations of the relational algebra arc
not straightforward since duplicate tuples make the inclusion probabilities of different tuples unequal. Also. the
estimation of an arbitrary relation algebra query containing union and difference operations needs further attcn-
tion since the principle of inclusion and exclusion (heavily used i InHoOz 901) is not valid for AVERAGE.

Nonparametric procedures, e.g., sign test and Wilcoxon ,ign-rank test, arc usually used for cstimaung
I MEDIAN. The sign test can be used for any distribution vhile the Wilcoxon sign-rank test is valid for svm.

metric probability distribution. We need to investigate how these techniques can be incorporated into the esti-
mation of MEDIAN of attribute values of a relational algebra query.

4.5. Centralized, Multi-User Databases

For real-time, multi-user databases, we think that the most promising approaches are [AbGM 88, AbG%1
891, which uses heuristics to minimize the number of transactions that miss their deadlines, and [HSTR 891
which uses protocols to handle CPU scheduling, data conflict resolution, etc. These techniques need to be
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merged with the "query level" controls introduced above, and their performances need a be compared.
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1. Introduction

Real-time databases are used in a wide range of applications such as aircraft tracking and the moni-
toring and control of modem manufacturing facilities. In a real-time database context, concurrency con-
trol protocols must not only maintain the consistency constraints of the database but also satisfy the tim-
ing requirements of the transactions accessing the database. One of the most important requirements of
real-time database systems is to complete as many transactions as possible without violating their timing
constraints [Son88].

Concurrency control protocols control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database. Serializability is a widely accepted notion
of the definition of correctness for concurrency control in database systems. A scheduler in database sys-
tems is entrusted with the task of enforcing the serializability constraints. It accepts database operations
from transactions and schedules them appropriately for the data manager. To satisfy both data consistency
and real-time constraints in real-time database systems, there is the need to integrate concurrency control
protocols with real-time scheduling protocols.

Real-time scheduling protocols address the problem of meeting the specified timing constraints.
Satisfying the timing constraints of real-time systems demands the scheduling of system resources
according to some well-understood algorithms so that the timing behavior of the system is understand-
able, predictable, and maintainable. The goal of most scheduling problems is to find optimal static
schedules which minimize the response time for a given task set. In many real-time systems, however,
there is generally no incentive to minimize the response time other than meeting the deadline. Real-time
systems are often highly dynamic requiring on-line, adaptive scheduling algorithms. Such algorithms
must be based on heuistics since these scheduling algorithms are NP-hard [Stan88]. In these cases, the
goal is to schedule as many jobs as possible, subject to meeting the task timing constraints. Alternative
schedules and/or error handlers are required and must be integrated with the on-line scheduler.

While there is progress in both concurrency control of transactions and real-time scheduling, very
little is known about the integration between concurrency control protocols and real-time scheduling pro-
tocols. Real-time task scheduling methods can be extended to become real-time transaction schcduling
methods while concurrency control methods are still needed for operation scheduling to maintain data
consistency. However, the integration of the two mechanisms in real-time database systems is not trivial,
because all existing concurrency control methods synchronize concurrent data access of transactions by
the combination of two measures: block and roll-back of transactions, both of which are barriers for
time-critical scheduling. The conservative two-phase locking protocol (2PL) [Bem871 and the optimisticI methods [Kung8l] are examples of the two extremes. In real-time database systems, blocking can cause

t This work was supported in part by ONR N00014-88-K-0245, by IBM ISD WG-249153. and by CIT INF-90-Oi I.
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priority inversion when a high priority transaction is blocked by lower priority transactions (Sha88J. The
alternative is to abort the low priority transactions if they block a high priority transaction. This implies
the waste of the work done by the aborted transactions and in turn also has a negative effect on time-
critical scheduling. One of the fundamental problems of real-time database systems is to develop real-
time transaction scheduling protocols that maximize both concurrency and resource utilization subject to
three constraints at the same time: data consistency, transaction correctness, and transaction deadlines.

We have been investigating scheduling algorithms and concurrency control protocols for real-time
database systems, and implementing few of them using the real-time database prototyping tool developed
at the University of Virginia [Son90], as a part of the StarLite project (Son9Ob]. The current version of
the prototyping tool provides concurrent transaction execution facilities with various underlying syn-
chronization mechanisms, including two-phase locking, timestamp ordering, simple priority-based con-
tention, priority inheritance, and priority ceiling. The user can specify system configurations such as the
number of sites, network topology, the number and locations of processes, the number and locations of
resources, and the interaction among processes. In addition, we have been developing an experimental
relational database manager for distributed real-time systems [Son90d]. In this position paper, we sum-
marize our effort in real-time database systems research and development.

2. Concurrency Control in Real-Time Databases

The general approach to the problem of real-time transaction scheduling in most of the research
work so far is to utilize the existing concurrency control protocols, especially 2PL, and apply some time-
critical transaction scheduling methods to favor more urgent transactions [Sha88, Abb89, Son89]. Such
approach has the inherent disadvantage of being limited by the concurrency control method upon which it
is based.

Concurrency control methods rely on the setting of a serialization order among conflicting transac-
tions. In non-real-time concurrency control methods, timing constraints are not a factor in the construc-
tion of this order. This is obviously a drawback for real-time systems. For example, with the 2PL, the

serialization order is dynamically constructed and corresponds to the order in which the conflicting tran-
sactions access the shared data objects. In other words, the serialization ordLr is bound to the past execu-
tion history with no flexibility. When a transaction T1 with a higher priority requests an exclusive lock
which is being held by another transaction, TL, with a lower priority, the only choices are either aborting
TL or letting TH wait for TL. Neither choice is satisfactory and thus the performance is degraded.

The situation is none the better with basic timestamp ordering protocol, since the serialization order
of transactions is already determined statically by their assigned timcstamps even before the execution of
iach transaction.

In [Abb88, Abb89], several real-time concurrency control protocols are developed by using the ear-
liest deadline scheduling and the least slack time scheduling for a single processor database system with
the two phase locking protocol for concurrency control. Though their results provide a valuable insight to
the problem of real-time transaction scheduling and concurrency control, what we need is a more practi-
cal concurrency control protocol for distributed real-time database systems.

The priority ceiling protocol, which is basicly a task scheduling protocol for real-time operating sys-
tems, has been extended to the real-time database system [Sha88]. It is based on 2PL and employs only
blocking, not roll-back, to solve conflicts. This makes it a very conservative approach. We have investi-
gated methods to apply the priority ceiling protocol as a basis for real-time locking prr:ocol in a distri-
buted environment. One approach to implement the priority ceiling protocol in a distributed environment
is to use a global ceiling manager at a specific site. In this approach, all decisions for ceiling blocking is
performed by the global ceiling manager. Therefore all the information for ceiling protocol is stored at the
site of the global ceiling manager.

The advantage of this approach is that the temporal consistency of the database is guaranteed, since
every data object maintains most up-to-date value. While this approach ensures consistency, holding
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locks across the network is not very attractive. Owing to communication delay, locking across the net-
work will only enforce the processing of a transaction using local data objects to be delayed until the
access requests to the remote data objects are granted. This delay for synchronization, combined with the
low degree of concurrency due to the strong restrictions of the priority ceiling protocol, is counter-
productive in real-time database systems.

An alternative to the global ceiling manager approach is to have replicated copies of data objects.
An up-to-date local copy is used as the primary copy, and remote copies are used as the secondary read-
only copies. In this approach, we assume a single writer and multiple readers model for distributed data
objects. This is a simple model that effectively models applications such as distributed tracking in which
each radar station maintains its view and makes it available to other sites in the network.

We have investigated the performance characteristics of the global ceiling approach and the local
ceiling approach with replication in a distributed environment. The real-time database system we have
prototyped for the experiment consists of three sites with fully interconnected communication network.
Our performance results have illustrated the superiority of the local ceiling approach over the global ceil-
ing approach, at least under one representative distributed real-time database and transaction model
[Son9Oc]. From the results of this experimentation, we believe that, even with the potential problem of
temporal inconsistency (i.e., reading out of date values), the local ceiling approach is a very powerful3 technique for real-time concurrency control in distributed database systems.

3. New Protocols

In addition to investigating the priority ceiling protocols, we have been developing more practical
real-time concurrency control protocols for distributed database systems; one is based on timestamp ord-
ering, and the other on locking. Our approach is based on the idea of adjusting the serialization order of
active transactions dynamically, by relaxing the relationship between the serialization order and the past
execution history.

The first protocol schedules transactions dynamically by using their runtime estimates and dcadl:es
to maximize both concurrency and resource utilization while satisfying database consistency and timing
constraints of transactions. Furthermore, it avoids unnecessary aborting and restarting transactions by
using slack time information of transactions. A transaction is characterized by its timing constraints and

its data and computational requirements. The timing constraints are a release time r and a deadline d. A
computational requirement is represented by a runtime estimate E which approximates the amount of
computation required by the transaction. These characteristics, release time, deadline and run time esti-
mate, are known to the scheduler when a transaction enters the system. The last characteristic, data
requirements, is not known beforehand but is discovered dynamically as the transaction executes. Note
that the computational requirement is simply an estimate that could be wrong or not given at all.

When a transaction is initiated, it is assigned a timestamp t by the system. The timing constraint of
the transaction will be satisfied if the transaction is committed with a timestamp t+c, such that
0 < t + c < d - E. We call c the commit delay and t+c (i.e., tc) the commit timestamp of the transaction.
We call the range <t, • • ,d - E> the commutability range of the transaction and use it in our database
scheduling algorithm. Any time within this range is acceptable to satisfy the timing constraint of the tran-
saction. Once a transaction is submitted into the system, its transaction manager will be in a phase called
negotiation phase. In this phase, the transaction manager goes into negotiation with all participating data
items for a timestamp within the commutability range, at which the transaction can be committed without
any conflict with other transactions. Through negotiation, the transaction manager tries to resolve the
conflicts of the transaction for data consistency and to meet the timing constraint of the transaction. If,
through negotiation, the system is not able to get such a timestamp within the commutability range, the
transaction has to be aborted.

The negotiation is run through access requests sent to the participating data managers in the follow-
ing way. To process the read or write request from a transaction, the transaction manager sends the
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commutability range along with the access request to the scheduler. The commutability range signifies
the amount of freedom given to the data manager for scheduling the access request. If a data item is free,

-I the data manager can schedule an access request whose timestamp is greater than the age of the data item
(i.e., ta), which is the maximum timestamp among those of the transactions whose operation is processed
on the data item.I, Provision of a range of timestamps gives a data manager larger maneuvering capability. If a transac-
tion manager has provided the commutability range <t, . ,d- E>, a participating data manager can
schedule the access request with timestamp t + s such that ta < t + s < d - E. We call s the schedule delay
and t + s (i.e., t,) the schedule timestamp of the transaction at that data item. For some sites, the commun-
ication delay for the access request may be so large that another transaction with timestamp t, where
tx > d has been committed ; in that case, the data manager does not accept the access request and sends a
reject message to the transaction. If an access request is accepted, the data manager sends its schedule
timestamp to the transaction manager. Although the access request has been scheduled at time t + s, the
data manager knows that if the transaction succeeds, it will be committed with some timestamp (i.e., its
commit timestamp) which lies within the range <t + s, • ,d - E>. We call this range the commit range
of the transaction for that data item.

It is the task of transaction manager to choose a commit timestamp from a commit range. The
schedule delay of access requests from the same transaction at different sites will be different. Once the
commit timestamp of a transaction is determined, the transaction manager follows the two phase commit
protocol.

The second protocol is a priority-dependent locking protocol, which has a flavor of both locking and
optimistic approach. Our goal is to provide a locking mechanism that adjusts the serialization order, mak-
ing it possible for transactions with higher priorities to be executed first so that high priority transactions
are never blocked by uncommitted low priority transactions while lower priority transactions may not
have to be aborted even in face of conflicting operations. For example, T, and T 2 are two transactions
with T1 having a higher priority. T 2 writes a data object x before T, reads it. In 2PL, even in the absence

of any other conflicting operations between these two transactions, T1 has to either abort T 2 or be
blocked until T 2 releases the write lock. That is because the serialization order T2-- T1 is already deter-
mined by the past execution history. T, can never precede T 2 in the serialization order. In our method,
when such conflict occurs, the serialization order of the two transactions will be adjusted in favor of T1 ,
i.e. T 1 ---)T 2 , and neither is T1 blocked nor is T 2 aborted. This priority-dependent locking protocol is free
from dead-locks.

The execution of each transaction is divided into three phases: the read phase, the wait phase and
the write phase. During the read phase, a transaction is executed, only reading from the database and
writing to its local workspace. After it completes, it waits for its chance to commit in the wait phase. If it
is committed, it switches into the write phase during which it makes all its updates permanent in the data-
base. A transaction in any of the three phases is called an active transaction. If an active transaction is in
the write phase, then it is committed and writing into the database.

Each lock contains the priority of the transaction holding the lock as well as other usual informa-
tion. The locking protocol is based on the principle that high priority transactions should complete before
lower priority transactions. This principle implies that if two transactions conflict, the higher priority
transaction should precede the lower priority transaction in the serialization order. If a low priority tran-
saction does complete before a high priority transaction, it is required to wait until it is sure that its com-
mitment will not lead to the abort of a higher priority transaction. Since transactions do not write into the
database during the read phase, write-write conflicts need not be considered here. With our new time-
critical transaction scheduling policy, a high priority transaction will commit before a low priority tran-
saction most of the time [Lin901.
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I Abstract

The Stack Resource Policy, which was developed to allow processes to share a single run-

time stack with bounded priority inversion and no deadlock, illustrates the advantages of early
blocking and distinguishing "preemption level" from priority - two principles which appear to
have broader applications.

3 Introduction. The importance of bounding priority inversion in priority-driven real-time schedul-

ing has been demonstrated by Sha, Rajkumar, and Lehoczky[6]. Extending the work of Liu and
Layland[4], they obtained simple a priori schedulability tests for systems of periodic tasks under rate-
monotone scheduling, even when those tasks have critical sections protected by binary semaphores.

Their results are based on following a policy that insures that for each process P'i there is a constant
Bi that bounds the length of time any job of Pi may be subject to priority inversion. In [6], they
propose several semaphore-locking policies with this bounded priority inversion property, including
the Priority Ceiling Protocol (PCP). In [5], they describe another such policy, called the Semaphore
Control Protocol (SCP), which is optimal in the sense of imposing no more blocking than is necessary

i to bound priority inversion and avoid deadlock.

Resource Modes, and the MBP. Extending the resource model of [6] to include allocation
modes, we have shown in [1] that bounded priority inversion policies can be defined for more general

resource allocation problems, including reader-writer resources. We defined a policy for general

resources, called the Nlinimal Blocking Policy (MBP), and proved that it is optimal in the same sense
as the SCP. Although the MBP is a consistent generalization of the SCP, it is defined differently. The

MBP is defined via a least-fixed-point solution I.o a recurrence that forbids deadlock and multiple

priority inversion, without reference to priority ceilings. The recursive definition solves a problem
with circularity encountered by the definition of the SCP given in [5], and the choice of least fixed-5 point makes the optimality property of the MBP follow more directly.

Stack Sharing. In [2], we reconsider the issue of priority inversion under the assumption of a

shared runtime stack. The original motivation for this application was a system with very ii,,ny

processes, but only a few distinct priority levels. The processes are mixed periodic and sporadic.

They are to be executed on a very fast microprocessor with a large on-chip state, so that context

switches are relatively expensive. Since only a few processes can be active at any one time, memory

allocated for the runtime stacks of the waiting processes is under-utilized. Therefore, in order to

reduce the total system memory requirement, it is desirable to have processes share one runtime

stack. The stack sharing scheme is illustrated in Figure 1.5 *This work supported in part by grant N00014-87-J-1166 from the U.S. Office of Naval Research. This paper
submitted to the Seventh IEEE Workshop on Real-Time Operating Systems and Software.
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3Figure 1: Stack per process vs. stack sharing.

The critical constraint imposed by the shared stack is that once a process is preempted it cannot
I be resumed until the process that preempted it completes (and releases the stack space immediatelyI above the preempted process). Without precautions, this easily leads to deadlock, so it is essential

to include the runtime stack among the noprpreemptable resources governed by a policy such as the

PCP. Applying the principles of the PCP and MBP under the assumption of a shared runtime stack,
we obtain two new policies, which we call the Stack Resource Policy (SRP), and thle Minimal Stack

These turn out to be simpler to implement than the PCP and the SCP/MBP. They also turn
out to be an improvement in two other respects:

1. They apply directly to deadline-driven scheduling, as well as rate-monotone scheduling.

2. They eliminate the possibility of one wasted context switch per preemption.

These improvements make the SRP and MSRP arguably superior to the PCP, even for situations
where there is no stack sharing. Moreover, retrospective examination of these policies reveals that
these improvements are due to tN6 simple observations which may have broader applications. In
order to explain these observations, and the stack resource policies themselves, we need to define
our model of a real-time system.

The Model. In our model, a real-time system is composed of a number of processes, which in
turn are are composed of a finite number of jobs. A jo".. is a finite sequence of instructions. This
sequence of instructions may include conditional control flow, but must execute in bounded time.
The instructions may include request and release operations for certain nonpreemptible resources.

, Each resource may be requested in a finite number of modes. For example, a shared-data
resource would have two modes, read and write, while a binary semaphore or unit of stack space
would have only one mode, equivalent to write.

A resource allocation A is a triple (J, R, m), where J is a job, R is a resource, and m is a mode.
A job starts and completes execution holding no allocations, and must release allocations in LIFO
order. The granting of resource allocation requests is governed by a resource allocation policy. This
policy is constrained to at least block those requests for which there are already conflicting usages
outstanding, as represented abstractly by a binary relation on allocations, called the direct blocking
relation. (For example, any allocation of a binary semaphore directly blocks all requests for that
semaphore by other jobs.) In order to avoid priority inversions, the policy may also block some other
requests, which are not directly blocked.

Each process determines a sequences of job-execution requests. Each job-execution request j

specifies a job, J, an arrival time, Arrival(J), and a priority, p(J). The priority is fixed at the
time the request arrives, but may vary from request to request for the same job, and within the
same process. For each job-execution request, the job is executed once, from beginning to end. The
job-execution requests of each process are processed sequentially, so that executions of the same job

aever overlap. The processor is allocated to job executions preemptively according to priority, and

FIFO within priority classes, with priority inheritance through any held resources.

Preemption vs. Priority... - T.P. Baker March 31, 1990
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I Figure 2: Preemption, in deadline-driven scheduling.

Each job J has a fixed preemption level, 7r(J), which is a positive integer. Preemption levels
are related to arrival times and priorities by the condition:

p(J)<p(T') V Arrival(J)<Arrival(J') V r(J')<r(J).

3 Intuitively, this says that 7r(J')< r(J) if .7' can be preempted by 7, and is based on the observation
that for .7 to actually preempt .7', it must have higher priority than 3T' and arrive after .7' has
started to execute.

Preemption Levels vs. Priorities. The preemption level of a job may, but need not, be equal
to the priority of requests for that job. They are equal, for example, when we apply our model to
rate-monotone scheduling. Each process has a unique priority, and all the job-execution requests of
the process have that priority. If we require that each job be requested by only one process, we can
let the preemption level of each job be the priority of the process that requests it, which is the same
as the priority of the requests for that job. In contrast, for deadline-driven scheduling there is no
such simple relationship between preemption level and priority.

In deadline-driven scheduling, we assume each job J has a fixed relative deadline, dj. If a
request for execution of J arrives at time t, that execution must be completed by time t + dj. The
relative deadline of a job is the size of the scheduling "window" in which each execution of the job
must fit.

Suppose there are two jobs J, and J2, with relative deadlines d, and d2 , respectively. Suppose
-"11 is a job-execution request of J, that arrives at time t1 , and 72 is a job-execution request of J2
that arrives at time t 2. In order for .72 to preempt J1, we must have the situation shown in Figure 2,
that is:

i. tl <t 2 (so .71 can get started);

ii. t1 + di >t 2 + d2 (so 72 can preempt).

It follows from conditions (i) and (ii) above that d, > d2 . Thus, we know that a job can only
preempt another job with a shorter relative deadline. This means we can assign preemption levels
to jobs according to their relative deadlines. In particular the preemption level of a job J may be
defined to be 0 - dj.

Preemption Ceilings. We can now generalize the idea of "priority ceiling" in [6], by defining the
preemption ceiling, [A], of a resource allocation A to be the maximum of zero and the preemption
levels of all the jobs that may be blocked directly by A. Like the priority ceiling, the preemption
ceiling of a resource allocation may be statically determined.'

At any instant of time, let the current ceiling, Y, be the maximum of the preemption level of
the currently executing job and the preemption ceilings of all the outstanding allocations. That is,
if job J is currently executing,

I = rnax({r(J)} U ([A'] I A'outstanding}).

Stack Resource Policies. The SRP blocks a job-execution request .7 from from starting execu-
tion, until 7< 7r(J). Once a job J has started execution, all subsequent resource requests by J are
granted immediately, without blocking.

1This is unlike the -dynamic priority ceilings" of (3].
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Figure 4: Execution with SRP.

The MSRP weakens the condition for a job to be allowed to start. Let Jc be the job that is
currently executing, if any, and Ac be the resource allocation currently held by JC that has highest
ceiling, if Jc is holding any non-stack allocation. The MSRP requires that a job execution request
7 be denied an initial stack allocation A (i.e. not occupy stack space above JC) iff there is an
outstanding allocation A' such that either of the following conditions is satisfied:

1. ir(J) < 7;
2. if r(J)=-f and J may request an allocation A 2 that is directly blocked by Ac.

Once J has started execution, all subsequent resource requests by J are granted immediately, without
blocking.

Note that the blocking tests are only applied before a job starts. However, this does not mean
that the all the resources that may ever be requested by J are locked at that time. They are only
allocated when requested, and are released when they are no longer needed. Thus, if J later requests
some allocation A and there is a higher level job JH that will need some allocation AH that is blocked
by A, JH is free to J preempt so long as J is not in a critical section for A.

It is proven in [2] that the SRP and MRSP guarantee no job is subject to priority inversion for
longer than the duration of one (outermost) critical section of another job. Moreover, the MSRP
imposes the minimum blocking necessary to guarantee this bounded priority inversion property.
Even if there is no stack sharing, the SRP is at least as good as the PCP in reducing worst-case
priority inversion.

Early Blocking. Another interesting property of the SRP and MSRP is that they reduce the
worst-case number of context switches to one per job-execution request, as compared to the PCP
and SCP, through earlier blocking. Resource allocation policies, such as the PCP, that avoid multiple
priority inversion but allow late blocking pcrmit the following scenario:

1. A high priority job, JH preempts the processor from a lower priority job, JM, and executes
for a while.

2. JH is forced to allow a lower priority job JL (preempted earlier by J) to resume execution,
because JL is holding a resource needed by JH.

3. JL releases the resource needed by J11 , and J1 resumes execution.
4. Jn completes, and JAI resumes execution.

Thus, the execution of JH may require four context switches. This is illustrated in Figure 3. The
solid horizontal lines indicate which job is executing. The horizontal lines of asterisks indicate the
relative value of c(S*), the current ceiling under the PC. (Note that c(S*) may be less than 7,
since it does not include the resources held by the current job. but this does not make any practical
difference.)

By comparison, the worst-case scenario permitted by the SRP has only two context switches,
as illustrated in Figure 4:

N Preemption vs. Priority... - T.P. Baker March 31, 1990
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1. JH waits until lr(JH) > T, then begins execution, preempting JL. (Note that JM and JH are

forced to wait until JL releases S, since T>7r(JH).)
2. JH completes and JA[ resumes execution.

3Conclusion. Ve have explained three basic ways to improve on the family of semaphore allocation
policies developed by Sha, Rajkumar, and Lehoczky. These are:

1. Modes. By introducing resource allocation modes, one can handle a wider variety of nonpre-Iemptible resources.
2. Preemption levels. By separating the concept of preemption level from priority, one can accomo-

date some dynamic priority schemes, including Liu and Layland's deadline-driven scheduling.
3. Early blocking. By blocking a job before it starts, in the case that one can predict that the job

will be blocked at some point during its execution, a wasteful context switch can be avoided and

the overhead of checking the blocking condition for every resource request can be eliminated.

These ideas lead to several interesting questions, some of which we are currently pursuing.

It appears that the principle of separating preemption from priority may permit extending
more of the known refinements of Liu and Layland's work on rate-monotone scheduling, to similar
results for deadline-driven scheduling. The principle of early blocking also seems to have a wider
application. Though we have applied it to the PCP and SCP/MBP, it is also applicable to other
resources allocation policies. In fact, we can show that if the resource requests of every job can
be predicted unconditionally, early blocking never lengthens the response time of any job without
shortening the response time of a higher priority job.

We are also able to make a slight further generalization of the resource model, to permit the
treatment of multiunit resources that allow requests for "m out of n" units. We are currently working
on a detailed description of this generalization as it applies to the MBP ....... resume here ..... The
key idea is to extend the definition of blocking to allow more complex forms of blocking, by sets
of allocations rather than individual allocations. Since any policy that insures bounded blocking
will not permit the most complex forms of blocking, the implementation can be more efficient than
would otherwise be expected.
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Supporting Real-Time Concurrency 1

N Victor Wolfe, Susan Davidson, and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104I

I 1 Introduction

Real-time applications such as robotics, industrial control and avionics, frequently operate in

distributed environments that require complex concurrency control under timing constraints.
However, it is currently unclear what basic concepts are needed for expressing concurrency

requirements in the presence of timing constraints. For example, consider a robotics application

where two robot arms must lift a container of chemicals from a moving conveyer belt. The arms

are shared among the lifting task and other tasks that execute concurrently in the application.

To prevent spills when lifting, the following constraints on the operation of the arms must

be satisfied: the arms should lift simultaneously, no other use of the arms should be allowed

while the lift is being performed, and either both arms should lift or neither arm should lift.
Furthermore, the lifting should be scheduled to meet timing constraints that arise from the1 dynamics of the moving belt and inherent properties of robot control algorithms.

To support such distributed real-time app'.ations, a programming language and run-time

3support system should have the following cha.,,cteristics. First, the development of correct pro-
grams should be facilitated. A correct program meets all of the functional and timing constraints

3 imposed by the application. Many of these constraints are illustrated in the example; they in-

clude serializability for resources, precedence ordering, absolute timing constraints, exclusive

execution, simultaneous execution, and all-or-nothing execution. Second, to improve resource

utilization and support the enforcement of timing constraints, concurrent access to resources

should be allowed whenever it can be ensured that functional constraints will not be violated.3Third, to facilitate the prediction of timing behavior, priority blocking should be avoided when-

ever possible. Priority blocking occurs when a lower-priority process keeps a higher-priority3 process from executing by holding resources required by the higher-priority process. Fourth, to

facilitate programming, modularity and abstraction should be supported in the expression and

I enforcement of correctness constraints.
1This work is support in part by the following grants: ONR N000014-89-J-1131, ARO DAAG-29-84-k-0061,

NSF CCR87-16975 and a grant from AT&T Telecommunications Program at the University of Pennsylvania
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I Current techniques for supporting concurrency control in real-time systems are mainly con-
cerned with scheduling of CPU and not of other shared resources such as memory and devices.3 For instance, Modula-2 [1], Real-Time Euclid [21, and Ada [3] control access to these shared
resources using mutual exclusion techniques (monitors in [1,2] and rendezvous in [31). There are3 several problems with the use of these mutual exclusion techniques in real-time systems. Firstly,

they deny potential concurrency that can be valuable in meeting timing constraints. Secondly,

because no preemption of resources is allowed in mutual exclusion techniques, and because

(non-CPU) resources are typically scheduled first-come-first-serve, priority blocking may occur.
Finally, they do not ensure simultaneous use of different resources or all-or-nothing performance3 of a set of actions on the resources.

In this paper, we present a basic set of necessary concepts for high-level expression of timing3 constraints and concurrency requirements in a distributed real-time program. Our discussion is

based on an abstract data-type model with transactions [4,5]. Our model consists of resources

and processes. Resources provide the abstract views of system entities, such as devices and

memory, which can be shared. Each resource defines a set of actions that can be invoked

from outside and also specifies permissible interleaving of the executions of actions. Processes

manipulate resources by invoking actions. A process specifies an ordering and timing constraints
for executing actions; in addition, it also specifies concurrency requirements on a subset of3actions, such as requiring that they be exclusive, simultaneous, or atomic. We conclude by

briefly describing our current work in developing language constructs and run-time support to5implement the concepts presented in this paper.

* 2 Resources

All components of the system that can be shared, such as CPU, memory, communication net-3 works, and devices, can be defined as resources. A resource, r, is characterized as (ST, AT, Cr).

Sr is a set of states. In the example, a robot arm is a resource; its state represents the Cartesian

I coordinates of the arm and the position of the hand (grasped/ungrasped). A, is a set of actions. A
process invokes an action as the only means to use the resource. The action invocation changes

the resource state and returns values to the process. In the example, each robot arm's actions
include: lift, lower, grasp, and read (which returns the position of the robot arm). C, is a com-

patibility predicate that describes conflict between actions such that, for two actions a, E .4T andIa2 E AT, C,.(a1 , a 2 ) = true if all interleavings of the execution of a1 and a2 produce the same
state for r and the same return values for a, and a 2. For instance, Carm(lift, gr(sp) = TRUE3 because the actions operate on different parts of the resource state; Cam(rcad, rcad) = TRUE

because read does not change the state and they return the same values in any interleaving;

I
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I C,,(lift, lower) = FALSE because the actions change the state in conflicting ways.

A schedule of a resource r is Sch, = (H,, startr, complete,), where H, is a set of all3 invocations of actions on the resource; start, : H, ---+ time maps each action invocation in

H, to the absolute time which it started executing; and complete, : H, -+ time maps each3 action invocation in H, to the absolute time which the action terminated. A resource's schedule

defines a partial order, -.<,, on the action invocations of H, such that, for two invocations a, E H,

and a2 C H,, a, --< a2 =:> completer(al) _ start,(a 2). The ordering -<r is partial because

the execution of actions may be interleaved in the schedule and thus neither complete,(al) <
start,(a2) nor complete,(a2 ) :_ start,(a,).3 A functional constraint of a resource is a predicate on the values of the state variables of the

resource. Each resource has a set of functional constraints that must be maintained to be correct.3 These functional constraints are the inherent properties of its design. For instance, a robot arm

may be constrained to have positive Cartesian coordinates that are bounded by maximum values.

We assume that a resource is designed such that each action preserves the functional constraints

of the resource if its execution is not interleaved with the execution of an incompatible action
of the same resource.

From this assumption, we can derive a sufficient scheduling constraint for guaranteeing the

functional constraints of a resource. We say that a schedule for a resource r is serial iff -<, is3 a total order on the action invocations of H,; i.e., there is no interleaving of action invocations.

For a given resource r, two schedules Sch and Sch2 are equivalent iff H , = H 2, the resource

has the same final state in Sch, and Sch2 , and every action invocation of H , has the same return

value in Sch, as the corresponding action invocation in Sch2 . A schedule is called serializable

iff it is equivalent to a serial schedule. Therefore, if the schedule of a resource is serializable,

then the functional constraints of the resource are maintained.

1 3 Processes

3 A process consists of action invocations and constraints on the scheduling of those invocations.

In particular, a process P is defined as (AI, -<p, SY NCSp, SIGSp, TSp, ESp, S Sp, ASP). AIp3 is a set of action invocations. -<p is an irreflexive partial ordering on AIp such that if a, -<p a2 ,

the execution of a, must be completed before a2 can start. If a , , a2 E A are not related by -<P,
then they may be executed concurrently. In the robot example, the ordering of action invocations

is as follows:

II
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readarmi ow grasparmi 0 . liftarml

readar=2 - grasparm2 - liftarm2

Unfortunately, expressing action precedence using only local orderings in processes is not
sufficient in most concurrent systems where processes interact. In these systems, precedence

orderings among action invocations in different processes must be provided for interprocess

synchron.zation. Interprocess synchronization requirements are expressed by two sets: a sync
set, SYNCSp, and a signal set, SIGSp. An action invocation ai E AI is a sync action, ai E3 SYNCSp, iff it is the first action invocation of a process to be ordered after a particular action
invocation in another process. An action invocation ai E AIp is a signal action, ai E SIGSp, iff3 it is the last action invocation of a process to be ordered before a particular action invocation in

another process. Each of a process's sync actions must be scheduled after all of its corresponding
signal actions have completed.

TSp is a set of timing constraints on action invocations. For instance, Pft has a deadline
that must be met to adhere to the dynamics of the conveyer belt. Each element ts E TSp is called
a temporal scope and defined as ts = (T, sa, sb, d), where sa is an absolute earliest start time,
sb is an absolute latest start time, d is an absolute deadline, and T is the set of action invocations3 to be time constrained. T has the following property: if a,, a 2 E T, then for every a E AIP

such that a, -<p a and a -<p a2 implies a E T. Note that periodic behavior can be expressed3 by a series of temporal scopes where for each temporal scope, tsi, of the series: di - sai = the

period, and sai = di- 1 .

The temporal scopes of a process are either nested or disjoint; that is, for all tsl, ts 2 E TSp,
either T, n T2 = 0 or T, g T2 V T2 _ T1. A process may nest temporal scopes to impose
tighter timing constraints. If a temporal scope ts 2 is nested in another temporal scope tsl, ts 23 inherits the timing constraints of ts, as follows: The initial temporal scope for the process is

(Alp, 0, cc, oo). When a temporal scope ts 2 = (T2, sa2, sb2, d2) is nested in the current temporal
scope ts, = (TI, sal, sbl, dl), the actual temporal scope ts. = (T', sa , sb , &) must satisfy these

requirements: sa2 < sb2 < d'; d' < dl; and d. < d2. To satisfy these requirements, the actual3 temporal scope for T2 is computed at run-time as follows: sa' := sa 2, d' := min(dl, d2 ), and

sb' := nin(sb2 , d' ). For an action invocation, its initial temporal scope is the current temporal

scope of the calling process when the action is called.
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1 4 Concurrency Requirements

3 In addition to satisfying a partial execution order and a set of timing constraints, the correct
execution of a process may require the exclusive use of resources (ESp), the simultaneous use

of multiple resources (SSp) and the atomic use of multiple resources (ASp).

A process may require that a sequence of actions on the same resource be performed with-
out interference from another process. For instance, on each robot arm Plif, must perform

I read, grasp, and lift actions without another process executing an action that moves the arm.

Each exclusive set es in ESp of a process identifies a set of action invocations on a single3 Iresource that must be executed without another process executing incompatible actions. To en-

sure the exclusive access during the execution of actions specified in an exclusive set, every
exclusive set es must satisfy the following property: if a1 , a 2 E es, then for every a E Alp

such that a, -<P a, a -< a 2 and a, a,, a 2 are action invocations on the same resource im-

plies a E es. Furthermore, every action of a process is in exactly one exclusive set (possi-

bly a single-action exclusive set). Given a set of exclusive sets, a scheduling of a resource
satisfies the exclusive set requirement if it is equivalent to a schedule in which no actions3 from different exclusive sets are interleaved. In the example, Plft has two exclusive sets:
ESp=if { {read rm,, grasparm,, lI ftatmi }, {readarm2, graspm2, ftar,2} }.

3 In real-time systems, there may be sets of actions that must be executed at the same time.

The partial order -P constrains the relative sequencing of action invocations and allows a set of

actions to be executed concurrently, but makes no provision for requiring simultaneous execution

of actions. For instance, although the two lift actions are concurrent in Pi~ft, one lift action may
complete just as the other is starting, causing the container to spill. To express the requirement
of simultaneous execution, SSp specifies sets of action invocations that must start executing

at the same time and must not be preempted. In the example, Plit has a simultaneous set:

SSSPft = {{ liftrml , liftrm2  }.

A final constraint that may be posed by a process is that a set of action invocations either

all must be performed or none must be. For instance, Plift should perform a lift action on one

arm iff the other lift action is also performed. Such a set of action invocations is called an

atomic set; ASp is the set of atomic sets of a process. Pf, has a single atomic set: ASpift

{{ liftrmI, li ftarm2 } }.

5
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I s5 Current Work

3 We are currently developing language constructs for the concepts presented in this paper. Serial-

izability constraints on resource schedules are met by restricting scheduling so that interleaving

is only among compatible actions [6]. Timing constraints are expressed using temporal scope

language constructs [7], which also provide exception handling for violated timing constraints.

Exclusive sets and simultaneous sets are explicitly expressed using exclusive block and simul-

taneous block constructs, respectively [6]. Atomic sets are supported by language constructs

for timed atomic commitment [8,9]. We ilan to implement these language constructs and their

I run-time support using a real-time kernel also being developed at the University of Pennsylvania

[101.
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* RTL meets ORE

Marc Donner and Farnam JahanianIIBM T. J. Watson Research Center
P.O. Box 218

I Yorktown Heights, NY 10598

1 Introduction
This position paper describes some research into the adaptation of RTL, a formalism for
specification of and reasoning about temporal properties of real-time programs. to use in the
ORE real-time systems programming language. The reasons for this collaboration are many,
but most basic among them is the fact that ORE needed tools for expressing temporal ideas
and RTL is both appropriate to the task and intuitively appealing.

S2 Events, occurrence functions, RTL formulae
RTL [41 is a formalism for specifying and reasoning about the real-time properties of systems.
RTL views a computation of a real-time system as a sequence of event occurrences. Informally.
events represent things that can happen in a system. An event occurrence, however, defines a
point in time at which a particular occurrence of an event happens in a computation. Hence, a
timing property of a system, such as periodic execution or a deadline on completion of a task,
can be specified as a relationship among event occurrences. The execution of an action is
modeled by two events: one denoting its initiation and the other marking its completion.
Changes in the state variables in a system are denoted by transition events.

The notion of real-time is captured by the occurrence function, denoted by 'W'. The
occurrence function assigns a time value to each occurrence of an event. Informally, §( e, i )
is the time of the ith occurrence of event e. An RTL formula is constructed using the
occurrence function, the relations =, <, <,>, and >, the first-order logic connectives - , A, V,
and -, and the V and 3 quantifiers. The following is an example of an RTL formula:

Vi O(e,i)+ 100 < a (e,i+ 1)
which states that there is a minimum separation of 100 time units between consecutive
occurrences of event e.

33 ORE events
In ORE there are two classes of events that are observable. The first class corresponds to the
start and stop events of actions in RTL. These are defined in an ORE program by inserting
labels in appropriate places in the code.

El->
S ;

<-E2

In the example above, two event labels are defined. El, and E2. The right-pointing-arrow is a
syntactic marker that specifies that El is the event that denotes the start of S. The
left-pointing-arrow tells that E2 marks the end of S. Note that it may be useful in some
situations to have two events between a pair of statements, one bound to the end of the first

I
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I and one bound to the beginning of the second. Preemption between two statements is
observable in an execution.

The second class of event corresponds roughly to the transition events in RTL. What
causes the ORE event is assignment to a watchable variable. A watchable variable is one that
has been specially declared to have the property that assignment to it is observable
asynchronously. In a certain sense, the ORE watchable variable is really an overloading of one
name with two things. The name is a state variable of the language, which may be assigned
and used in expressions, and it is an event that can be observed with the asynchronous event
observers described in the next section.

If the state of a program can be completely described by the value of its program counter
and the values of all of its state variables, then the two kinds of ORE events correspond to
program counter assignment in one case and to state variable assignment in the other. In this
sense, no significant component of an ORE program is inaccessible to observation as an event.

4 Watch and when
Watch and when are ORE language elements that permit asynchronous observatioa of event
occurrences by ORE processes. The most primitive element is watch which suspends a thread
of control waiting for any one of a list of named events to occur. When one of the events
named has occurred, then the thread resumes. There is an optional do clause for the watch
statement that permits a single statement or strip to be associated with the awakening of the3 strip in an indivisible way. A watch statement looks like this:

watch v1, V2 , ... , t'n do S;

When is a more powerful primitive that permits a thread of control to suspend while a
Boolean-valued expression is false, resuming when it becomes true. There is a do clause for
when as well, though it has a somewhat stronger property. The code strip that is introduced
by the do clause of a when statement is guaranteed that when it is executed the Boolean
expression that it depends on will be true. As a result, the when statement is a high-level
test-and-set statement. A when statement looks like this:

I when B do S;

The when statement might be implemented in terms of the more primitive watch statement:

<

{ if B then { S; break; }; };3 watch dependent-list( B );
>

where dependent-list is a function that returns a list of the watchable variables upon which
BooleanExpression depends. Notice that if between the awakening of the watch and the
execution of the do clause something causes the BooleanExpression to become false again, the3 if will fail and the while loop will reiterate.

5 Event occurrences: history and data structures
The initial design of ORE focussed exclusively on concurrent programming and asynchronous
event notification features [1,2]. Our concern for tools for talking about time in ORI" programs
led us toward certain RTL-hike features, in particular a notion of associating the time of
occurrence with each event. This led, after study of the RTL work, to the decision to include a
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I finite history into ORE watchable variables. The history would capture a number of previous
assignments to the watchable variable, recording both the value and the time of assignment.
With this information available a large number of RTL formulae would be available at runtime

to the ORE programmer.
Here is an example, in C, of what the data structure for a watchable variable of type

watchable-foo, a primitive type representable in a single word of storage. would look like. In
the example, the number of past values of one of these variables that is kept is defined in the
constant H, which is a per-variable value.

3 struct w-foo

{
process *foo-watchers;3 mt foo-index;
time foo-time[ H i;
foo foo.valueE H ];3 watchableIoo;

When an assignment is to a variable of type watchable-foo is encountered in the ORE source
code, the following C code might be generated when assigning an expression to a watchable
variable x:

/* "x = exp;" is the ORE code */
var ix : int;
ix = ( x.foo-index + I ) % H;
x.foo-value[ ix ] = exp;

x.foo-time[ ix I nowo;
x. foo-index++;3 do.wakeup( x.foo-watchers );

It must be noted that the integer variable fooindex is the absolute occurrence index of
the current (last) event in the history. Since the finite history is implemented as a circular list3in the above code segment, the modulus operator is used to calculate the position within the
circular list. An alternative formulation allows implementation of an assignment to a
watchable variable without requiring the modulus operator. The cost is one extra integer3variable in the structure watchablejoo to keep the current position in the circular history
list, i.e., absolute index of current occurrence modula H.

ORE provides an RTL-like notation for accessing both the times of assignment and the3values of historical events. The time of a previous occurrence of an event is named by
Q( event-name, -a ) where a is a constant between 1 and It. Q( event, -1 ) is the most
recent time at which etent has occurred, and (9( event, -H ) is the least recent still3remembered instant. Of course, since only a finite number of occurrences of each event are
remembered, references out of bounds must be handled appropriately. To avoid subtle aliasing
problems with ©(event-name, -a), we can also allow the notation 0(event-name, i) such3that i is a program variable. The time of the iti occurrence of the event is obtained from the
history. .gain, references out of bounds must be handled. The latter notation allows
manipulation of event histories and occurrence indices via ORE language constructs. For
example, all remeibered occurrences of an event can le examined in a loop construct.

In RTL state variables are related to evonts by a Boolean test, so that Ihere can be an
event for x being equal to 7 and a different event for x being greater than 7. In O1E all
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I assignments to x are events and the value is not distinguishable in that way. In order toprovide access to historical values of a watchable variable. ORE provides the Oval operator.
oval( x, -a ) is the a'th oldest value that was assigned to x. Oval( x, -1 ) is always the
most recent value and is synonymous with x.

6 Runtime RTL
The primary advantage of adapting RTL to specifying runtime properties of real-time systemsis that RTL distinguishes between different occurrences of the same events. However, adding
RTL-like constructs to a programming language raises a number of issues. Among them are
questions of reducability of RTL formulae to algorithms, finiteness of event histories, syntax ofspecifications, and interaction between language features and RTL formulae. In this section wewill discuss two different approaches that we are considering. Our initial thought is that both
approaches are needed.

6.1 Profane RTL - the implernentor's viewORE events and watchable variables, along with the occurrence functions Q( e, -a ) and
Oval( e, -a ) reduce the corresponding RTL notions to program state variables. As a result,
they may be used almost anywhere in an ORE program. The only tricky detail is that, for
instance, occurrence fun.tLions are themselves watchable and produce wakeups in watch and
when statments whenever the underlying event occurs.

By adding RTL-like occurrence functions to ORE one can now express things that are3 difficult to specify in RTL because it is not intended for functional specification. An example
of this is deadline satisfaction in a client-server model. In ORE using watchable variables this
can be implemented as follows:

3 var
req watchable int;
ack watchable int;

proc server

when req != 0; /* wait for a request */

• /* handle the request */
when ack = 0 do { ack = req; req =; }

proc client( id : t )

when req = 0 do req = id; /* wait for idle server */
when ack = id; /* we have been served */
../* gather up the result */
ack = 0; /* clear the acknowledge ,/

/* Do other work ,/ >

3 server;

client( 1 );
client( 2 );

client( 3 );

client( 4 );!I
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U \We would like to ensure that each client is served promptly after its request. \e call do
that by verifying that each occurrence of ack happens within deadline d of its req. This
requirement is slightly tricky with pure RTL since balancing request and acknowledgement
pairs for an arbitrary number of clients requires an arbitrary number of transition events. In
impure RTL we can take advantage of the values of the state variables req and ack to establish
the balancing, as follows: Vi3j Aval(req, i) = Aval(ack,j) A 'Ki(req, i) + d > 4(ack, j)

In an execution time environment, we'd like to actively check the satisfaction of the
deadline, reporting an error if it is not met. The following ORE code for the client, an3 augmentation of the code exhibited above, serves is purpose:

proc client( id int )

< var reqtime : time;
event reqdeadline;

when req =03 do { /* This is a critical section */
req = id;
reqtime = ( req, -1 ); /* reqtime is 'now' */3 oneshot( reqdeadline, reqtime + d ); /* a future event */

1 /* wait for the ack, watch for the deadline, in parallel */
< /* one thread */

when ack = id;
... /* gather up the result */I ack = 0; /* clear the acknowledge*/
break; /* terminate the sequence */

< /* the parallel thread */
watch reqdeadline

do {3 var missed : boolean = TRUE;
ix : int = 1;

while ix <= HISTORY && missed

fif Oval( ack, -ix ) = id &&
Q( ack, -ix ) < reqtime + deadline1 then m issed =FALSE;

ix = ix + 1;

if missed /* stop the other process and quit
then { preempt; report-error( id ); }

I break;

I
The primitive oneshot used above sets a tinier that will c: .e an event at aspecific time3 in the fuiture. This time i.s specified absolutely, not a, a delay. ( ,mrse, if the time is already

59I



I

I in the past, the event is triggered immediately. Notice that since we have associated the
deadline detector with each client individually, we have an event associated with that specific
task's acknowledgement deadline. This simplifies the deadline detection code because it
doesn't have to worry about scanning for the appropriate deadline event, in addition to having
to find a matching acknowledgement in the event history of the ack variable.

I 6.2 Sacred RTL - the specification ideal
The preceding subsection presented an approach for specifying timing properties of real-time
systems by embedding RTL-like notation within ORE statements. The primary advantage of
this approach is that it allows manipulation of the 0 function and occurrence indices via ORE
constructs. An alternative approach is to make the timing specification independent of the
ORE language constructs. This can be viewed as superimposing RTL on top of ORE to
annotate programs written in ORE with RTL formulae. Since the proposed system of
annotation is independent of ORE syntax, a preprocessor can extract the timing information.
One potential use of this information is to inform the scheduler of the timing requirements of a
system. An alternative use is to detect a violation of timing properties at run-time. However,
this approach requires separating the timing requirements of a system from its functional
specifications. An RTL-based system of annotations is proposed in a report by Jahanian and
Goyal[3]. A similar approach can be employed for annotating ORE with RTL formulae.

We introduce two syntactic language constructs for annotating ORE programs with RTL
formulas: assert and maintain. The assert statement is used to test an RTL formula at a
particular point in the execution of a specific ORE sequence. The maintain statement is used
to enforce a constraint at all times in the execution of an ORE program. An assert statement
is of the form:

U assert RTL-formula do S;

When an assert statement is reached in the execution of a sequence, the RTL formula is
checked for satisfiabilitv. If the formula in the assert is not satisfiable, the corresponding
statement S is executed. Otherwise, the execution continues with the next statement. Observe
that the satisfiability of the RTL formula is checked only when the assert statement is3 executed. A maintain statement is of the form:

maintain RTL-formula do S;

I The maintain statement ensures that RTL formula is tested whenever an event occurs that may
affect the satisfiability of the formula. This is similar in a certain sense to the ORE statement

3 when !RTL-formula do S;

except that the formula may contain quantifiers and may not contain state variables. The
execution of the maintain statement can be viewed as starting a separate thread. The thread is
blocked until the occurrence of an event which requires testing the l(TL formula. The
corresponding statement S is executed if a violation is detected.

Consider the requirement that a sensor must be sampled at least 10 tiiies during each
500ms interval. This minimum sampling rate can be specified by the mailitaii .lat eient in
the following ORE program:

I proc sensor

3 ... /* sample the sensor
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i <-SAMPLE
.../* report sample result */

proc main;

sensor;
<
maintain Vi ?(SAMPLE, i + 10) : I(SAMPLE, i) + 500 do

v := ERROR; /* report the error */

>

* 6.3 Bounded History
Testing the satisfiability of an RTL formula in an assert or maintain statement requires
recording of event occurrences in the past. Since checking a timing property may involve
multiple occurrences of the same event, it may be necessary to keep more than one occurrence
of an event at any point in the execution of a program. As described in earlier sections, the
notion of a history in ORE allows remembering a finite history of occurrences of an event.
However, the history size is defined as a constant at compile time. Furthermore, since an RTL
formula may be arbitrarily quantified, it is impractical to examine all previous occurrences of
an event when testing the satisfiability of a formula. For example, recall the RTL formula
specifying a minimum separation of at least 100 time units between two consecutive
occurrences of the event E: Vi A(E, i) + 100 < A(E, i + 1). The satisfiability of this formula
can be tested at run-time if either the last two occurrences of event E are remembered or each3 occurrence of event E is kept for 100 time units.

For a discussion on the issues related to checking RTL formulas at run-time refer to the
report[3]. In it, three classes of properties are identified that can be expressed in RTL and for
which bounds can be established on event histories at compile-time. Algorithms for testing
satisfiability of formulas in these classes are also described.

I 7 Concluding Remarks
This design exercise demonstrates that there is a good match between the facilities of ORE
and the requirements of RTL for runtime implementation. In addition, the RTL-like formulae3should provide an expressive tool for ORE programming. We plan to build this into ORE.
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I 1 Introduction

In hard real-time applications, safety and timeliness of execution are critical issues since
failures usually have unpleasant consequences. A task in such an application has constraints
related to timing behavior, such as an Earliest-Start-Time (EST), a Deadline (DL), and a
Worst Case Execution Time (WET)'. Tasks must execute subject to these time constraints
and any failure to do so, a deadline failure for instance, may result in catastrophic results.
This has perforce resulted in a conservative approach to scheduling such tasks; worst case
execution times of tasks are assumed to be known a priori and a schedule is laid out on the
basis of these WETs.

While such an approach, in general, ensures that tasks do meet their deadlines, it also
results in severe under-utilization of the system since tasks typically complete in much
less time (sometimes orders of magnitude less) than their WETs would indicate. This is an
obvious drawback in an application with a very dynamic task set; tasks that could otherwise
have been accommodated in a schedule are rejected. Another problem with the above naive
approach to scheduling based on worst-case execution times arises when a task for some
reason, perhaps owing to resource sharing delays, exceeds its WET. This results in deadline
failure, but such a failure is noticed very late in the task's lifetime. This reduces the time
available to take remedial action. One common solution to this is to add a safety margin
by increasing the WET of a task by some arbitrary percentage in anticipation of resource
sharing delays. This however only exacerbates the under-utilization problem while at the
same time offering no assurance such margins would be adequate.

We propose a compiler assisted solution to this problem which, we expect, will mitigate
some of the disadvantages of worst-case schedules. Through static analysis the compiler
identifies and reorganizes the code of a task into partitions based ol predictability and
monotonicity, perhaps aided by programmer pragmas. It then inserts measurement code
at selected partition boundaries. At run time, instantaneous cask performance, as obtained

'A more complete taxonomy of time related notations can be found in the work by Ilaban and Shin [2].
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I by executing this measurement code and from measures of resource sharing delays, is used
to modify the behavior of the remainder of the task and also to dynamically adapt the task

* schedules.
In Section 2 we describe the background of our research. In Section 3 we explain our

approach and in Section 4 we compare it to other techniques. Finally in Section 5 we
outline some future work including the use of statistical analysis to improve the run-time
performance.

I 2 Background

Two projects have influenced this work. The first, by Haban and Shin [1,2], applies real-time
monitoring of task execution, using dedicated hardware, to affect the scheduling of these
tasks. The second, the Quartz Project at Univ. of Illinois, uses the notion of Imprecise
Computations [4,6] - results of a poorer quality are tolerated - to ensure that hard real-time
tasks are able to meet their deadlines. We explain both these in a little more detail.

In the first case, a real-time monitor consisting of dedicated hardware and software, is
installed as a permanent part of a real-time system. A task in the system is programmer-
divided into n disjoint partitions based on its structure. Code partitions may be classified
as Predictable or UnPredictable depending on how accurately their WETs can be estimated
statically. Resource sharing delays also introduce unpredictability. Programmer inserted
events at partition boundaries are used by the monitor to compute actual execution time
and hence the savings as compared to the WET. These savings are compared to the resource
sharing delays and used to make scheduling decisions.

A monotonic algorithm is one where there is a monotonic relationship between the
quality of the result generated and the duration for which the algorithm executes. Imprecise
computation requires that a task encoding such a monotonic algorithm be divided into a
mandatory subtask which must complete and one or more optional subtasks which may
be aborted. Successful completion of the mandatory subtask yields an acceptable result
of a poor quality. When the mandatory subtask completes, if there is sufficient time left
in the schedule, the optional subtasks are allowed to continue. Each optional subtask
progressively refines the result obtained from the mandatory subtask. They can also be
viewed as monotonically improving upon the result generated by the mandatory, subtask.

3 Adaptive Scheduling

1 3.1 Introduction

In this section we discuss an approach to dealing with some of the problems with worst-
case scheduling. We call this technique Compiler Assisted Adaptive Scheduling. Compiler
techniques are used to partition and reorder application code based on criteria we present
later. The compiler also inserts measurement code at selected locations. These locations are
selected based on certain specific criteria that we present later. Delays and execution time
savings are obtained at run time by time-stamping each time a task blocks at a resource
and by executing compiler inserted measurement code fragments at appropriate points in
the application code respectively.
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I 3.2 Code Partitioning

Each task is viewed as a series of partitions that can be classified as being either:

e Predictable: These are computations whose execution time can be accurately de-
termined statically. These include straight-line code blocks, conditionals where the
different branches have approximately the same execution times, and loops with fixed,
statically known bounds.

e Unpredictable: These are computations whose execution times cannot be accu-
rately determined at compile time and include conditionals where the branches have
significantly different execution times and loops where the loop bounds are not known

* statically.

The compiler is responsible for distinguishing predictable computations from unpredictable
computations. Predictability of a code partition is determined by examining its execution
time variance [7] which is computed through compile-time analysis. Code partitions with
high variance are classified as being unpredictable.

In addition, and quite orthogonally, code partitions can also belong to one of the fol-
lowing classes:

* Monotonic: The code for a monotonic algorithm typically consists of an initialization
part followed by a loop. The loop must be executed for some specified minimum
number of iterations to obtain an acceptable solution. Further executions of the loop
refine the solution. The execution time of the algorithm can therefore be deliberately
varied by varying the number of iterations; reducing the number of iterations reduces
the exection time; increasing the number of iterations increases the precision at the
expense of execution time.

I Non-Monotonic: Straight-line code falls into this category. However we are pri-
marily interested in loop behavior and classify a loop as being non-monotonic if it
requires a certain number of iterations to obtain a result and further execution does
not improve the result.

For each loop in a task the user can specify whether the loop represents a monotonic
computation and also a desired minimum number and recommended number of iterations.
This can be achieved by either extending the language or allowing the user to provide

compile-time directives (pragmas). For example:

PRAGMA: Monotonic Loop MIN = 20; RECOMMENDED = 50

In practice it will not be possible to obtain a clean separation of a task into Pre-
dictable/Unpredictable or Monotonic/NonMonotonic partitions. There will be significant
overlap between the two classifications as shown below:

I 1. Unpredictable and Non-Monotonic (UP-NM): A code partition containing
conditional branches whose alternate paths require varying execution times or non-
monotonic loops with bounds unpredictable at compile-time are included in this cat-
egory. The execution times of UP-NM partitions are unpredictable and cannot be
varied at run-time.

6



I

= 2. Unpredictable and Monotonic (UP-M): A monotonic loop whose body has un-
predictable execution time. Each iteration of the loop is a UP-NM computation.
Although the number of loop iterations of such a computation can be varied to con-
trol its execution time, the time required by a single loop iteration is unpredictable
and cannot be varied at run-time.

3. Predictable and NonMonotonic (P-NM): Computations whose execution time
can be predicted accurately but cannot be varied at run-time fall in this category. Such
computations contain straightline code, conditionals with alternate paths requiring
approximately the same execution time, and loops with fixed bounds having loop
bodies with predictable execution times.

4. Predictable and Monotonic (P-M): Computations composed of loops whose
bounds can be varied and whose bodies have predictable execution times belong to
this category. Not only can the execution time of such a computation be varied at run
time but it can be done fairly precisely as the loop bodies have predictable execution
times.

* 3.3 Partition Reordering

The above list represents the classification scheme used by the compiler to divide a task into
subcomputations. Next the compiler reorders the subcomputations [3] of a task according
to the following principles.

The unpredictable computations are performed before the predictable computations for
two reasons. Firstly, if these computations execute in time much less than their WETs
then the time savings can be used to adapt the schedules to accommodate additional tasks.
Secondly, the accuracy with which the execution time of the remainder of the task can
be predicted will be higher as it contains fewer unpredicatable computations. Since the
execution time for the remainder of the task is what is critical in determining whether a
task will meet its deadline, it is important for this information to be as accurate as possible.

Within the categories of predictable and unpredicatable computations the nonmono-
tonic computations should be executed before monotonic computations. This is because if
nonmonotonic computations take longer to execute, the number of iterations of one or more
monotonic loops can be lowered upto the MIN value specified in the associated pragmas in
order to reduce the execution time of the remainder of the task. Figure 1 summarizes both
the classification scheme and the sequence in which the compiler attempts to reorder the

* code.

3.4 Measurement

Once the compiler has identified and reordered code partitions based on the classification
scheme shown above it inserts code fragments that, at run time, measure actual elapsed
execution times and hence deviations from anticipated VETs. These code fragments update
a data structure that contains attributes of all code partitions. The selection of measurement
points determines the effectiveness with which the information collected can be used to
ensure timely task completions.

We now discuss some criteria for selecting measurement points.
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Figure 1: Code Classification and Reordering

" It is beneficial to perform measurements immediately after an unpredictable compu-
tation has been completed since this will enable us to determine if any time has been
saved during its execution.

i Measurements should be performed prior to monotonic computations since if the task
is behind schedule the number of iterations of a monotonic loop can be reduced to
meet the deadline.

" The measurement points should be introduced less frequently at the beginning of the
task and more frequently towards the end. This is because as execution proceeds the
task gets closer to its deadline and is more likely to require adaptation to meet its
deadline. This predicates greater precision in measurement.

There is a second class of measurement for which the compiler is not responsible and
which is used to determine, at run time, the resource sharing and preemption delays expe-
rienced by an executing task. This is done by appropriately time-stamping the task each
time it is blocked and unblocked.

I 3.5 An Example

To summarize, there are three main functions that the compiler performs. It identifies code
partitions on the basis of the classification scheme mentioned earlier. It reorders the code
partitions based on the criteria described earlier. Finally it selects partition boundaries
that are most suitable for inserting measurement code.

The example in Figure 2 illustrates some of the aspects of the above process. The
flowgraph has been partitioned into smaller computations and assigned to the code classifi-
cation categories described earlier. The compiler has selected two points in the program atwhich to measure elapsed execution times. No measurement is performed after executing
UP-NM(1) because it is too early in the task's execution to require adaptation. If the task
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m Figure 2: A Partitioned Control Flow Graph

follows the left branch the measurement is performed before P-M(4) because if the task is
I behind schedule the number of iterations of the monotonic loop P-M(4) can be reduced.

Along the right branch another measurement point is introduced. The loop UP-M(6) can

be viewed as a series of executions of UP-NM(7). Since each iteration of the loop body
m UP-NM(7) takes unpredictable amount of time to execute, the number of iterations of the

loop cannot be accurately predicted prior to the execution of the loop. Therefore the mea-
surement is performed after each iteration of the loop. This allows the maximum number

m of loop iterations to be executed without missing the task deadline.

3.6 Run-Time Adaptations
m The previous sections discussed functionality related to the compiler, namely code parti-

tioning, partition reordering, and insertion of measurement code. We now briefly describe
I how these phases interface with the execution phase of the task and how the information

obtained can be used for adapting task behavior and task schedules.
The compiler stores attributes of all partitions that it has identified in a data struc-

m ture called the Attribute Data Structure (ADS). This contains, among other things, WETs
of all partitions, predictability and monotonicity characteristics, and MIN and RECOM-
MENDED values obtained from pragmas for all monotonic loops. The structure is organizedFto reflect the control flow graph of the task with paths weighted to reflect statistical corre-

lations among various paths in the graph. The ADS resides at a fixed location in the data
segment of the numbe atins of the mnoi loo Ptask at run-time.

m At run-time, each time the task executes one of the compiler inserted measurement

fragments, the actual execution times of the relevant code partitions are obtained and
inserted into the ADS. From these measurements the time savings, if any, can be computed.SOn the other hand each time a task is blocked at a resource, the delay that it experiences is

measured. After each such resource-sharing delay the task checks whether the cumulative
delah exceeds th e thte savings. If so it looks ahead in the execution graph, by
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I traversing the ADS, and checks all monotonic (UP-M, P-M) partitions to see whether
changing one or more loop bounds will help to offset the cumulative delays. If not the task
is aborted. If sufficient savings can be obtained from modifying monotonic loops than as

many loops as axe necessary are changed and the task continues. Again if sufficient savings

are obtained the scheduler can decide whether to allow additional tasks into the schedule.
By the same token if a task is aborted owing to excessive delays ttlln a new task may be

allowed in.

3 4 Comparisons

We now discuss some of the advantages of our work and compare it with the two projects
mentioned earlier.

Unlike Haban and Shin's work our approach presumes no additional hardware support.
While dedicated hardware such as they have used does improve the efficiency of monitoring,
we feel that such an option is not readily accessible to the majority of installed applications.

We expect that there will be some loss of efficiency since at run-time the task has to compute
both time savings and resource sharing delays, b'oth of which Haban and Shin do with the
assistance of dedicated hardware. We address this problem by inserting measurement points
very selectively and by designing the attribute data structure so that traversals are efficient.
Again, by reordering the code so that unpredictable partitions are executed earlier, we gain
time savings early in the task execution. This allows us to have fewer unnecessary aborts
and the aborts that do occur will occur earlier in the task's execution thereby wasting less
time.

As compared to the Imprecise Computation work of Project Quartz, we do not require
that a monotonic algorithm be partitioned into one mandatory sub-task and one or more
optional subtasks, but are able to use existing algorithms while still taking advantage of
imprecision and monotonicity of algorithms. Since we are able to change loop bounds
at run time, we can do so with greater precision than with the "chunking" inherent in
partitioning into optional subtasks and with very little additional overhead. We hope to3 achieve most of the benefits of imprecision through the use of compile-time directives and
compiler assistance rather than with a special-purpose programming language [5]. Thus our
approach is more suited to revitalizing "dusty-deck" programs.

5 Future Work

We are currently working on several aspects of compiler assisted adaptive scheduling includ-
ing an attribute grammar to better characterize task partitions, design of a data structure
to maintain the attributes of the code partitions, and the use of statistical analysii to ensure
high-performance run-time access to this structure. Ve now briefly touch upon the use of
statistical information in adaptive scheduling.

At run-time, each time a task blocks and then is resumed it has to decide whether
to abort or whether to continue execution after modifying the loop bounds of nonotonic
partitions that are further ahead in the execution sequence. At any point in the control
flow graph (CFG) of a task there can potentially be any number of possible paths that the

executing task can take. Each of these paths could contain monotonic partitions. In the
absence of any other information the task would have to modify the loop bounds on all
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I such monotonic partitions to obtain the necessary time savings. This however would be
extremely inefficient, both in terms of traversal of the attribute data structure and in terms
of actual modification of the loop bounds. One solution to this problem uses the compiler,
again perhaps aided by pragmas, to determine correlations among various execution paths in
the task cfg. Now when a task traverses the cfg, it modifies only those monotonic partitions
that lie along paths that have a high correlation with the current execution point. In this
way we hope to improve the dynamic behavior of run-time adaptations.
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5 In critical real-time systems knowledge about the maximum execution times
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11 Introduction

1 Most computer systems for real-time process control must meet high standards of re-
liability, availability, and safety. In many of these real-time applications, the cost of a
catastrophic system failure can far exceed the initial investment in the computer and
the controlled object. To prevent such failures, system design must guarantee behavior
as specified in the domains of both value and time during all anticipated operational

I. situations.

One of the key aspects in designing predictable real-time systems is exact knowledge
about the timing behavior of the real-time tasks involved. In order to guarantee that a
real-time task can be finished before the expiration of its specified deadline, the maximum
execution time (MAXT) or a reasonable upper bound have to be known in advance, i.e.3 before run time.

[Kli86, Pus89, Sha89, Sto871 present concepts on how MAXT can be calculated and
which restrictions have to be imposed on programming languages for critical real-time
systems (e.g. bounded loops).
This report suggests how these concepts could be effectively integrated into the design
process of a real-time system. The major idea is that the MAXT analysis forms an
integral part of the programming environment in order to provide the programmer with
concise information about the maximum execution times of arbitrary pieces of code.

The proposed programming environment is conceived as part of an already existing pro-
totype design environment for real-time system, the MARS Design System MARDS31 [Sen88, Sen89]. However, the concepts are not restricted to this particular design envi-
ronment.

The structure of this report is as follows. Section 2 provides background information
about the design principles applied in MARDS. Section 3 lists some basic requirements
for the proposed programming environment, which is described in Section 4.I
2 Background and Motivation

MARDS has been designed to support the development of critical real-time applications
according to the MARS architecture [Kop89]. MARS (MAintainable Real-time System)
is a periodic, time driven distributed real-time system architecture. A MARS system
consists of a number of clusters each of which is built of a set of components intercon-

Snected by a real-time bus. Each component executes a set of tasks. Communication
between tasks is realized exclusively through messages.

During design the overall system is gradually refined, first into a set of clusters (set of
components characterized by a high inner connectivity), then each cluster independently
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1 of the others into components. Concurrently, the functional behavior of the system is
modeled through real-time transactions. A real-time transaction refers to the execution
of a set of correlated actions between a stimulus from the environment and the corre-
sponding (time-constrained) response indicating the completion of this set of actions.
During system design transactions are refined into subtransactions which finally become

I. tasks.

It is a key concept of the design system and thus the underlying design methodology that
4,me forms an integral part and does not constitute an isolated addendum. Transactions,
tor example, are characterized by various time attributes, e.g. MART, the maximum re-
sponse time which is actually dictated by the environment, and MINT, the minimal
interval between two invocations of the same transaction. At the task level MAXT de-
termines a crucial characteristic. Before coding activities take place, MAXT is estimated
for each ta,k (by an experienced designer) in order to verify whether an appropriate pre
run-time schedule can be found for the designed software or not. If the scheduling prob-
lem can be solved the tasks are coded respecting the estimated MAXTs.

1 3 Requirements for the Programming Environ-
* ment

I The following is a list of basic requirements for the proposed programming environment.

General Applicability: Two fundamentally distinct approaches towards critical
real-time task development are conceivable: One starting with a predetermined

MAXT, which has to be met by the implementation (as a result of a consequent
top down refinement), the other starting with the coding activities (bottom up) not

I respecting any given timing constraints during implementation. While the second
strategy only demands calculating and adequately representing MAXT, the first
approach requires more sophisticated mechanisms for comparing and controlling

the desired and the actual MAXT as well as support for improving unsatisfactory
results. The programming environment should support both approaches.

e Timing Information: During program development the programmer must have
access to the following (time related) information at any point in time.

I - How long does the execution of this section of the program take ?

- How long does the execution of the overall program take ?

I - Am I adhering to the demanded MAXT ?

- If not, what is the time difference ?
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o Traceability: Traceability in this context refers to the global consequences of
changes in a particular (local) section of the program. Questions such as "What will
happen to the global MAXT if I am able to reduce MAXT of this particular block"
are likely to occur and have to be answered by the programming environment.

o Modelability: Modelability is closely related to traceability. Modelability in our
definition comprises support for

- comparing different combinations of implementation alternatives and

- experimenting with hypothetical time changes in different program sections.

* Turn Around Cycles: The time it takes to compile and evaluate a program (in
the time domain) has to be kept as short as possible. It is unacceptable to pass
the code to a separate tool to calculate MAXT. All components (editor, compiler,
MAXT analyzer) have to be integrated into a common framework.

* User Interface: A highly sophisticated (graphical) user-interface is required to
appropriately handle and present the various timing information.

4 The Programming Environment

The requirements listed above are the basis for the programming environment. The
programming environment consists of three cooperating parts, 1) an editor which incor-
porates a text editor and a so-called time editor, 2) a compiler and 3) a timing anaiysis
tool. The components of the environment exchange timing information vid a timing tree
which represents the structure of the program or program fragment being developed. At
each point in time the timing tree contains a certain amount of timing information. The
amount of timing information present in the timing tree depends on which part of the
environment has produced or changed the tree information.

Figure I shows the programming environment. The tools necessary for handling the
timing information are presented in the grey area. The programmer implements his
programs/tasks with the syntax directed text editor and passes them to the compiler.

The compiler generates the object code as well as the timing tree. The timing tree is a
simplified program syntax tree augmented with timing information. Its nodes represent
the sequential parts, branches, bounded loops, markers and scopes (the latter have been
introduced in [Pus89]) of programs.

The timing information produced by the compiler contains only the maximum execution
times of sequential (basic) blocks, i.e. the compiler fills the leaves of the tree with
timing information. The timing tree is forwarded to the MAXT analyzer which fills the
inner nodes with the values calculated for the maximum execution time of the respective
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3 Figure 1: programming environment for time guaranteed tasks

.I program parts represented by this subtree. Thus, the maximum execution times for all.3 branches, loops, scopes and the whole piece of source code analyzed are available in the
timing tree.

I The time editor reads the timing tree after it has been completed by the MAXT an-

alyzer. The time editor transforms the time information contained in this tree into a
Nassi-Shineiderman diagram which is displayed in parallel with the program code. Ev-3 ery structural unit of the diagram provides a display field for the actual MAXT of the

matching program part and one or more display fields for hypothetic timing values.

S Time Editing

I . I f the user is not satisfied with the timing behavior of his program he can set hypothetic

execution times at every level of the Nassi-Shneiderman diagram and have the MAXT
I calculated under the assumption of the hypothetic values. In this way he can model theI timing behavior of potential improvements and gets an immediate feedback about its

gains before actually changing any piece of code.

I If a simulated value is input at a specific level in the Nassi-Shneiderman diagram both

I



i actual and hypothetic time values of the abstraction levels below are ignored in the
MAXT calculation. A change at one specific level influences all simulated timing values
of the surrounding constructs. Hypothetic timing values wich have been set by theIprogrammer are marked to inform the programmer that these values are not derived
from analyzing actual program statements.

i
Code Variants

I Often the programmer has many possibilities for writing tasks with the same functional-
ity. It might not always be obvious which variant needs the minimal amount of time to
execute. For this reason the environment supports multiple windows in which different
versions of program parts can be edited and evaluated. The programmer may code dif-
ferent variants of some program parts or even implement different algorithms, calculate3 their maximum execution time and check which variant is suited best. The least time
consuming one may then be used in the application being developed.

1 B5 Summary and Conclusion

I In this report we have discussed the requirements and concepts for a real-time task
programming environment. When developing software with predictable timing behavior

i it is a waste of efforts to write programs and find out afterwards that they violate the
specified timing behavior. Therefore, the timing behavior has to be a central issue
throughout the whole task development process.

We have proposed a way to include timing behavior in the task design. Timing infor-
mation is available during the whole implementation process. In every phase, the task'sI timing behavior can be calculated and modeled, thus allowing the programmer to test
whether the specified requirements can be met. In addition, the programming environ-
ment allows the user to generate different variants for a piece of source code to find the3implementation with the shortest MAXT.
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A Synthetic Workload for Real-time Systems

Daniel L. Kiskis and Kang G. Shin

I Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

3 ABSTRACT

This paper presents our progress in the development of a synthetic workload (SW) for real-time3systems. We discuss the issues involved in developing a SW and identify a number of important
properties a SW should possess. Then, we outline the approach we have taken to design and
implement a SW with these properties. Also, described briefly is the workload model upon1which the SW is based. Finally, we discuss the preliminary version of the SW which has been
constructed for HARTS, an experimental distributed real-time system being built at the Real-Time
Computing Laboratory, The University of Michigan.

1 Introduction

For critical real-time applications, it is essential that a computer system meet its performance
and dependability requirements. The ability of the system to meet these requirements can be
partially determined a priori through modeling and simulation. However, simulation is often
inadequate because simulation models lack sufficient detail about the system. For tractability pur-
poses, many system details are abstracted out in the simulation model. Hence, for measurements
to be accurate, they must be made on the actual system.

An example of where these effects are important is in the study of the schedulability of tasks
on a real-time system where both periodic and aperiodic tasks are present. Some results for
specific cases may be arrived at analytically or through simulation. However, most analytical
solutions and simulation approaches assume independent tasks. They ignore resource contention
between tasks. This assumption is rarely valid in real systems. Simulation study can partially
account for the effects of resource contention delays, but only through experimental evaluation
on the target system may the total effect of resource contention be seen.

I Given the importance of experimental evaluation, we must identify factors which particularly
influence performance and dependability. One of the most important factors is workload. The
workload is the set of programs that the real-time system is executing along with the input data
associated with those programs. The demands for resources placed on the system by the workload
The work reported in this report was supported in part by the NASA under Grant No. NAG-1-296 and NAG-1-492
and the Office of Naval Research under Contract No. N00I4-85-K-0122. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of
the NASA or the ONR.
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I
are called the workload characteristics. For the analysis of the system to be valid, the workload
which the system is executing must be taken into consideration. It is known that performance
and dependability are strongly dependent on workload. For example. Woodbury and Shin [1]
shuwed the reiationship between fault latency and workload. Fault latency is the time between
the occurrence of a fault and the subsequent generation of an error by that fault. In a fault-tolerant
computer, fault latency affects dependability. Longer fault latency increases the probability that
there will be multiple latent faults in the system at one time, a situation which may result in
system failure. They demonstrated that fault latency, and thus dependability, is a function of
system utilization, a workload characteristic. As utilization increases, fault latency decreases,
and, thus, dependability improves.

There is a great need for tools which will allow the user to perform experiments on a system
with a known workload. In particular, the tools should support user specification of workload
characteristics along with measurement of selected performance and dependability indices. In
this way, the relationship between specific workload characteristics and system performance and
dependability may be observed. A number of tools, such as job mixes, kernels, workload mod-
els, and benchmarks, have been developed which act as workloads for the system under study
and/or perform measurements of a computer system. Each of these tools is useful for providing
measurements at a given level of detail.

The problem with these tools is that they are often not very flexible. They cannot easily be
altered to exhibit a range of workload characteristics. Another problem with them is that, with
few exceptions, they were each developed for use on non-real-time systems. As such, they often
incapable of being representative of real-time workloads. A real-time workload has a number
of distinguishing properties, such as periodic tasks and hard deadlines, which are not present
in non-real-time systems. We propose to remedy the shortcomings of these tools through the
development of a tool which will provide greater flexibility and greater representativeness for
real-time systems. The tool to be used is a synthetic workload (SW). A SW consists of a set of
programs which are written such that their structure and behavior models that of the programs in a
real-time application. The tasks of the SW are parameterized such that the workload characteristics3may be easily changed to suit the experimenter's and applications' needs.

This paper identifies the desired properties of a SW and describes our efforts to develop one
SW with these properties for use on distributed real-time systems. In the past, little effort has
been made to establish a structured, scientific basis for the design and implementation of SW's;
that is, most of the work has been ad hoc. To remedy this deficiency, we propose a structured
approach to SW design based on a real-time workload model.

The workload model will provide a high-level specification of the structure and behavior of
the SW. It will also describe the system workload in sufficient detail to be used in analytical
evaluation. In this paper we will concentrate on the model's use as a specification of the SW. To
implement the SW, we must also define the low-level details. Hence, the implementation of the
SW will require two steps. The first step is the specification of the software structure of the SW. It
entails specifying what processes must execute on each processor and defining the communication
and synchronization between the processes on the same or on separate processors. The second
step will be the development of a high-level language for specifying the SW for the entire system.
Such a language will increase the utility of the SW by making it feasible for the user to specify a
SW for a large distributed system. A specification in this language will provide the structure and
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parameters of the synthetic tasks along with their interactions. It will be compiled by a synthetic
workload generator (SWG) into the individual tasks and the necessary control processes for each
processor.

I 2 The Synthetic Workload

A synthetic workload should possess a number of properties. The most important of these are
representativeness, flexibility, simplicity of construction, compactness, and system independence.
Definitions of these may be found in [2). Probably the most important of these properties is
representativeness. Many performance evaluations are aimed at determining how the system will
behave once it is put into operation. As such, accurate measurements can only be obtained if
the SW that is executed is representative of the actual workload the system will execute. To
improve the representativeness of the SW, the workload model will be described using a dataflow
notation. A dataflow notation has been chosen so as to be compatible with the notations used
in rapid prototyping and high-level specification of real-time systems. As such, the SW will
be structurally similar to the actual workload. This compatibility has been shown to produce
representative SW's [31. Since many of the functions of the workload will be abstracted out, the
SW will be more compact than an application based on the same notation.

We have completed the first step in the implementation of the SW. The software structure
has been designed and implemented based on the workload model and the requirements of the
target system. The target system for the SW is the Hexagonal Architecture for Real-Time Sys-
tems (HARTS), a distributed real-time multiprocessor system being developed at the Real-Time
Computing Laboratory (RTCL) at the University of Michigan. An architectural description of
HARTS can be found in [4] and its operating system, called HARTOS, is described in [5]. The
structure of the SW is based loosely on the SW developed for HARTS by Woodbury [6].

The SW implements the workload model as a collection of processes on each processor.
This collection consists of two groups: the driver processes and the application tasks'. The
application tasks are the main components of the SW and are responsible for producing the
resource demands on the system. The driver processes are mostly responsible for initializing and
starting the workload and for the collection of performance data.

The four processes in the driver are the root process, the logdata process, the dispatcher
process, and the trigger process. The root process spawns all the other processes and tasks in
the system and establishes the communication mechanisms through which the processes may
communicate. The logdata process collects performance data and stores it in memory. This data
may later be read for off-line analysis. The dispatcher is used to model the occurrence of external
events which effect the behavior of the workload. For example, the dispatcher may simulate the
arrival of sensor data. It is also used to provide task control which is not supported by the target
system, but which is required for a given experiment. For example, on HARTS, the dispatcher
is used to provide periodic task invocation because the current HARTOS does not yet support
periodic task scheduling. The trigger acts as a software timer for the dispatcher.

The structure of the driver is not influenced by the values of the workload parameters. It

'The term "task" is used here to distinguish the application processes from the driver processes.
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is constant regardless of the experiment which is being performed. The characteristics of the
workload are changed by altering the structure and behavior parameters of the tasks. Tasks
have a basic skeleton structure which is required for interaction with the dispatcher. Otherwise,
the structure of the task is completely flexible. The task parameters specify the scheduling
characteristics (e.g., period, deadline, etc.) and behavior characteristics (e.g., resource usage) of
the tasks. By parameterizing the task structure, we improve the flexibility of the SW. Ease of
construction is improved by locating the parameters in a common table where they may be readily
altered by the user.

* 3 The Synthetic Workload Generator

The SW is being designed to be used in a distributed real-time system. In such a system,
each processor must execute both the driver processes and application tasks. The driver processes
are identical on each processor. However, in all but the most trivial cases, the application tasks
need to be different for each processor. These differences reflect the heterogeneous nature of
distributed real-time systems. The tasks will differ depending on which resources are available on
a particular processor. They will also differ to model varying load patterns in the system. Even
in the case of tasks which are structurally identical, there will be processor-dependent parameters

* wwhich will differ between the tasks.

In the current version of the SW, application tasks must be individually coded in C and
debugged. This process is tedious and error-prone. For a system as large as the current version
of HARTS with 19 nodes, this process becomes especially difficult. It would require creating and
debugging the application tasks for up to 57 different processors. Such a design goes against the
second and third properties of a good SW, i.e., flexibility and simplicity of construction. What
is needed is a high-level Synthetic Workload Specification Language (SWSL) to describe the
workload in terms of the workload model. The SWSL description will be compiled by a SWG
which will produce the parameter tables and the C code for the individual application tasks.

I The SWSL will be a representation of the dataflow notation in a textual form. Its purpose
is to define a workload in terms of synthetic tasks and data flows. Since most, if not all, of the
computation and logic are abstracted out of the tasks, the SWSL need not possess the complexity
and expressive power of a true programming !anguage. The only constructs required are those
which specify the components of the workload model. The language will allow the specification
of implementation details such as task to processor assignment and resource assignments.

A number of additional features will be included in the language. The SWG will have access to
a library of common operations. This library will consist of generic and user-definable operations
which may be used within a synthetic task specification. The language will also allow the user
to define multiple instances of a synthetic task. The user will write the definition of the generic
instance of the task and specify to which processor each instance is to be assigned. The SWG
will use this information to generate the code for each instance of the task.

One benefit of the SWSL is that it will provide a system independent specification of the
workload. It will assume no specific target system. As such, for purposes of comparison, the
same workload specification can be used to generate SW's for different systems.
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4 Summary and Conclusions

I We have identified a number of properties that a SW must possess. These properties are
important because they improve the usefulness and the ease of use of the SW. Our approach to
designing and implementing a SW is aimed at incorporating these properties. The SW is based
on a workload model which allows system independence and analytical verifiability. To create
a SW for a particular study, the workload model will be described using the SWSL. The SWSL
improves the ease of construction of the SW by allowing the user to define the SW's structure at
a high level. This description will be compiled by the SWG to create the SW code. This code is
then executed on the system and the appropriate measurements made.

Although our SWG is targeted to create SW code for HARTS, the SWSL is system independent
and the basic structure of the SW processes will be portable to other systems. Our implementation
enables us to determine what engineering decisions must be made to implement the SW on any
realistic distributed real-time system.
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I. Introduction

By a real-time (computing) system, we mean one in which the execution of some or all of its
programs must satisfy timing constraints. The next generation real-time systems are likely to be built on
parallel and distributed architectures, ranging from multiprocessors and multicomputer systems to loose-
coupled host computers and workstations. A problem with using many of these systems is that the
programmer must explicitly manage the different aspects of the parallel environment: message passing,
synchronization, and other details. Unless the programmer is partially relieved of this burden, it is
difficult to program parallel (and distributed) real-time applications.

Real-Time Mentat (RTM) is a programming environment designed to simplify the task of
programming parallel real-time applications. Specifically, it is an object-oriented and data-driven system
whose architecture is as shown in Figure 1. It provides an easy-to-use, transparent mechanism to exploit
parallelism and run-time support for scheduling and executing parallel, real-time programs. The RTM
programming language is an extended C++. The extensions are added to facilitate automatic detection of
data flow and generation of data-flow graphs, to express the timing constraints of individual granules of
computation, and to provide scheduling directives for the run-time system. In addition, through its visual
user interface, which allows the programmer to visualize and modify any program graph and, hence, the3 corresponding RTM program. Real-Time Mentat supports the visual programming paradigm.

This paper discusses the design choices made in Real-Time Mentaj and gives a high-level view of
its architecture and programming language. The rest of this paper is divided into four sections. Section II
discusses the design objectives of Real-Time Mentat and the approaches taken to meeting these
objectives. Section III describes the underlying computation model and the object-oriented approach to

I User's View

RTM Preprocessor Object Libraries Other Tools

Virtual Machine

Token Token Run-time Computation
Matcher Matcher Data flow Units Scheduler

(Uninstantiated) (instantiated) Detection

I Machine Specific Components

Intra-processor Inter-processor Host OS
communication communication Interface

Figure 1. Real-Time Mentat Architecture

4
t This work was partially supported by the NASA Contract No. NAG 1 613 and the U.S. Navy ONR Contract No. N00014-89-
J-ll8l.
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Iits implementation. Section IV describes the features of the RTM programming language. Section V
briefly describes the RTM Virtual Machine and summarizes its status.

3 UI. Design Objectives and Choices

One of the primary design objectives of Real-Time Mentat is that it would relieve the programmer
of the burden of explicitly managing parallel computations. It takes a hybrid approach to meet this
objective: the programmer explicitly specifies those objec: c!3ses that have sufficiently large
granularities and, thus, defines the granules of computation that can potentially be executed efficiently in
parallel on different processors. However, the data dependencies and parallel structures of the
computation are implicit. Invocation, communication, and synchronization are handled automatically by
the compiler and the run-time system. The compiler constructs some graphs at compile time and
generates code to automatically construct other data-flow graphs at run time.

IThe other design objective is that it would provide a flexible interface between parallel, real-time
applications and the underlying system. Real-Time Mentat again takes a hybrid approach. Specifically,
Real-Time Mentat permits the expression of the timing requirements of its programs in terms of timing
constraints similar to those used in [1,21. The programmer tells the underlying system the timing
constraints of the individual granules of computation, but the system has the burden of scheduling the
granules to meet these constraints. Timing constraints can be either soft or hard. Rather than eliminating
non-determinism in timing requirements completely (as, for example, in Real-Time Euclid [3]), only the
granules of computation with hard timing constraints are restricted to have bounded and predictable
execution time and resource requirements that can be determined at compile time. Using the timing
constraints as scheduling directives, the RTM run-time system guarantees that all hard timing constraints
are met while trying to meet as many soft timing constraints as possible. Moreover, RTM programming
language makes it relatively easy to implement imprecise computations [4,5] and primary and alternative
versions [6] that have different execution times and, thus, provides the run-time system with flexibility
scheduling and resource management.

HI. The Real-Time, Macro-Data-Flow Model and Its Implementation

Real-Time Mentat is based the macro data-flow model of computation [7-9]. Individual granules of
computation that are treated by the underlying system as units of work to be assigned to processor and
scheduled for execution are macro actors, hereafter simply referred to as actors. Actors perform high-
level functions, such as FFT, encrypt, and database read; their granularity is chosen by the programmer
using a language construct described in Section IV. Similar to traditional large-grain data-flow models
[10,111, computation is data driven. A high-level view of each program is its macro data-flow graph,
hereafter referred to as its program graph. Nodes in this graph are actors. There is a directed arc from
one actor to another in the graph when there is data dependency between them. Tokens, containing data
and control information, are sent along the arcs. When matching tokens on all its input arcs have arrived,3an actor is ready for execution. When an actor executes, it consumes the input tokens. When its
execution completes, it generates one or more output tokens containing its result. The output tokens are
forwarded along the arcs from it to the actors that depend on the result.

I The macro data-flow model differs from the traditional large-grain data-flow models in two ways.
First, in addition to regular actors which do not maintain state information between executions, some
actors, called persistent actors, do so. Persistent actors provide the ability lacking in the traditional
models to model side effects and permit inter-program communication. This capability is necessary br
applications such as data communication and database management. Persistent actors are similar to
resource managers in [12], but differ from resource managers in that several actors may share the same
persistent state. This corresponds to an object class with several member functions in its interface.
Second, while program graphs in tradition models are either entirely static or dynamic only to the extent
of allowing variable number of copies of some subgraphs, the structures of macro data-flow graphs can3change dynamically as graph nodes (actors) are elaborated at run time into arbitrary subgraphs.
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I Specifically, program graphs are represented using data structures called futures and future lists [7-91. A
future list is a list of futures. Each actor receives a future list with its input tokens; each future in the list
names a dependent actor that will receive a copy of the result produced by the actor. The list sent to a
dependent actor describes a directed graph rooted at that actor. Actors may augment the future lists that
are passed to them. When the execution of an actor terminates, it sends a new future list, together with its
result, to each of the dependent actors named in its future list. In this way, the node representing an actor
in the program graph can be hierarchically expanded. We call this subgraph the elaborated subgraph of
the actor. The modification of the program graph via elaboration is a local opei,tion, and otler portionsof the graph are not affected.

I Similar to other real-time graph models (e.g., [13,141), each Mentat actor may have its own timing
constraints. In order for the system to be able to guarantee that hard timing constraints are met, graph
elaboration must be restricted for actors with this type of constraint. Specifically, every actor (and
subgraph) with a hard timing constraint must have bounded execution time and resource requirements
that are determined from static analysis at compile time. Moreover, the set of actors with hard timing
constraints and the portions of the all program graphs containing them are known to the run-time system
before their execution begins. This makes it possible for the scheduler to determine the sehedulability of
all these actors and the strategy used to schedule them. An actor (or subgraph) with a soft timing
constraint, on the other hand, can be elaborated dynamically at run time into different subgraphs. When
the imprecise computation technique [4,5] is used, each actor with a hard timing constraint is expanded
into two parts: its mandatory part and its optional part; they have hard and soft timing constraints,
respectively.

In Real-Time Mentat, actors are realized as external operations of RTM objects. Each RTM object
has a name, a representation of the data stored in the object, a set of externally visible operations, a
process executing in parallel with invocations of operations of the object, and a (optional) set of timing
constraints. Each actor is implemented by an operation of some object, or, in the case of an actor with
multiple versions, by operations of several different objects. To invoke an operation of an object, tokens
(messages) are sent to the object, one for each parameter. When the tokens for all parameters have
arrived for a particular operation, the corresponding actor is enabled, and the execution of the operation
may begin. Each token contains a computation tag that is used to match the token with other tokens
belonging to the same sub-computation. A computation tag contains the system-wide unique name for
the specific object instance to which is the token is sent, a computation (sequence) number that specifies
to which sub-computation of the named object this token belongs, and the timing constraints that give the
intervals of time within which the operation is constrained to execute. The computation number in a
computation tag is a unique label of a node in an elaborated program subgraph. Computation tags are
similar to, and provide the same function as, token colorings in traditional data flow systems [15].

IV. Real-Time Mentat Programming Language

The RTM language is obtained by adding six extensions to the C++ programming language. They
are (1) the keywords Mentat and persistent in class descriptions, (2) the member function maino in
class definitions, and (3) creato/destroyo statements, (4) return to future (rtfO), (5) select/accept
statements, (6) timing blocks and timing constraints. The RTM preprocessor translates RTM programs
into C++ programs extended with library calls.

To provide the programmer with a way to control the degree of parallelism, Real-Time Mentat
allows both standard C++ classes and Mentat classes to be defined. By default, a standard C++ class
definition defines a standard C++ class. The programmer defines a Mentat class by using the keyword
Mentat in the class definition. This defines set of actors, one for each external operation, that can
potentially be executed in parallel with other actors in order to improve performance. Operations that are
not complex enough to yield a sufficiently high ratio of the execution time to average message passing
time cannot be efficiently executed in parallel due to high communication overhead. Classes of objects
with such external operations should be defined as standard C++ classes. A Mentat class may be declared
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I as either persistent or regular. The programmer may specify a member function main() in the class
definition of a persistent class. The maino procedure is started by the underlying machine once the object
has been instantiated. It represents the thread of control in the object, and when it terminates the object is
destroyed.

Transparent to the user, a Mentat class definition is really two class definitions. One defines a
Mentat variable, the interface of the Mentat class that the user of the class sees. The other defines a class,
the instances of which implement the Mentat class. We call these instances Mentat objects. This feature,
together with the creato/destroyo functions described below, makes it possible to define generic
instances, that is, instances of Mentat classes represented by their names rather than their physical selves.
When a new Mentat variable is declared, a new instance of the object class is not automatically
instantiated. Instead, only an unbounded object name of the appropriate type is instantiated. To provide
the programmers with a means to create new instances of Mentat objects, we have added two new
reserved member functions for all Mentat class object: createo and destroyo. These functions are used
to instantiate new instances and destroy existing instances of Mentat classes. In particular, create()
allows the programmer to provide optional location hints (e.g., high communicationratio, co-locate,
etc.) that inform the underlying system where, ideally, the new instance is to be instantiated, e.g., on a
different processor or on the same processor as some other Mentat objects. The location hints allows the
programmer to influence the underlying system's decision on where the new object is actually3 instantiated.

Th, e function rtff) is the RTM analog to the returno of C++. Its purpose is to allow each RTM
member function (actor) to return a value to its successor nodes in the program graph. It takes two types
of arguments, local variables or constants and subgraphs. Returning to a subgraph using rtf0 is the
mechanism for subgraph elaboration. Their use is transparent to the programmer except for the case
where the actor has hard timing constraints.

In standard C++, member functions of an object are always available. RTM objects must be able to
specify which operations are candidates for firing. Select/accept statements are added for this purpose.
Specifically, these statements allow the programmer to specify those member functions that are
candidates for execution based upon a b-oad range of criteria, including timing constraints of the
computation. The semantics of RTM select statement is similar to the semantics of select statement of
ADA. A RTM accept statement may list two alternative fct-declarators. The effect is that a call is made
to either one of the declared functions. Which function is called is decided at run time by the scheduler
depending on the current timing constraints of the call. If one of the options can be completed in time
while the other cannot, the one that can be is chosen. If both can be completed in time, the first one is
chosen. In this way, the programmer can specify explicitly the different operations, with different timing
requirements, that implement the same actor.

The syntax ofa RTM timing block is same as in Flex [2]:
timing-constraint -> exception action

begin <statements> end;

A timing constraint is a Boolean expression containing one or more of the following keywords: start,
deadline, duration, and period. (They are, respectively, the time before which execution of the block
must begin, the time at which its execution must end, the length of time interval during which the block
may execute, the length of intervals during each of which the block must execute once.) A timing
constraint is considered hard unless it is declared to be otherwise by the keyword soft. When the
expression evaluates as true, the exception action associated with it is executed. A legal exception is
rtf0. This makes it possible to return an immediate result produced so far in the course of the
computation if the execution of the timing block must be prematurely terminated.
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V. RTM Virtual Machine and Current Status

To support parallel execution of RTM programs on a multiprocessor or distributed system, a RTM
virtual machine runs on each processor. The RTM virtual machine is based on the existing Mentat virtual
machine, which has been implemented to run on the Encore Multimax as well as hypercubes and
networked Sun workstations [7-9]. Conceptually, the structure of the RTM virtual machine is similar to
that of a traditional data-flow machine; it contains storage units for objects, tokens and predicates; a
matching unit; a computation unit; and an update units. The predicate storage unit stores a current
predicate and a message queue for each object in the object storage unit. The predicate specifies which
actors of the object are available for execution. The token storage unit is responsible for ensuring that
tokens are delivered to the correct actors. The update unit is responsible for forwarding the results of the
computation to the actors named in the future list and updating the predicate storage unit with a new
predicate. When a new message arrives for an actor, the matching unit determines if that message
enables the actor by applying the object's predicate to the messages stored in the token storage unit.
Once the matching unit has determined that an actor is enabled, it places that actor in the ready-to-run
queue in the computation unit. The computation unit is responsible for executing actors that have been
enabled and placed on the ready-to-run queue. It examines the ready-to-run queue and selects an actor to
execute based on the timing constraints of the actors in the queue. It then executes the actor until the
actor completes (or until its timing constraint is violated). Once the execution of an actor is terminated,
the computation unit notifies the update unit and goes to examine the ready-to-run queue again.

The RTM virtual machine differs from the existing one in the ways tokens are sent, ready-to-run
queue is ordered, and the matching and computation units operate. In Real-Time Mentat, the update unit
may preferentially forward and update the results from computations according to the underlying
scheduling policy. Similarly, the ready-to-run queue is ordered according to the scheduling policy
adopted by the system. The matching unit keeps tracks of the timing constraints of actors who have not
yet received all of their input tokens and ensures the appropriate exception handling if any cA these
constraints is violated.

A prototype RTM system is being implemented on a 10-processor Encore Multimax and on a
network of Sun workstations. A visual interface is being added to support visual programming of RTM
programs. Once the prototype system is completed, we plan to collect and develop a set of real-time
applications and use them in the evaluation of the functionality and performance of this prototype system.
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3 Abstract

As real-time systems become more demanding, multiprocessing and parallel processing techniques will
be increasingly called upon to meet stringent timing requirements. This position paper outlines ongoing
research on the development of a multiprocessor architecture which is a hybrid of the von Neumann and
dataflow architectures, with built-in support for real-time systems. This research is being carried out by
the Empire Project at IBM Research. A hybrid version of a dataflow architecture and a traditional von
Neumann architecture has been proposed recently [7] and is also being studied by others [4, 5, 11 ]. The
hybrid architecture supports built-in hardware mechanisms for parallel processing, synchronization,
priority-based execution and context-switching. This set of features provided by the hybrid dataflow
architecture is in particular attractive to real-time systems, where inter-process communication costs and
the overhead of synchronizing parallel threads of execution can be prohibitive on traditional architectures.
A rich set of primitives offered by the hybrid architecture opens up a fertile research ground for the use of3 appropriate compiler techniques, run-time systems and programming languages for real-time applications.

1. Introduction
Hard real-time systems require predictable timing behavior in the presence of stringent timing

requirements. While fast hardware may be needed to handle the computing capacities required by real-
time systems, predictable timing behavior can be guaranteed only by techniques such as the use of
analyzable real-time scheduling algorithms [9, 12]. It is apparent that the real-time functions expected
from embedded systems (such as the Space Station and the Mars Rover project) are becoming
increasingly more demanding. This radical change in computing requirements needs to be supported by
advances in hardware as well as in software. As a result, multiprocessors and distributed systems have
found widespread use in recent years motivated by the potential speedup of applications run on them [10].
Multiprocessors, in particular, are attractive for parallelizing real-time tasks with stringent timing
requirements. With parallel execution, these tasks can (potentially) be made to execute faster than on
sequential uniprocessors. Nevertheless, in the context of hard real-time systems, this speedup becomes3 useful only if it is predictable.

2. A von Neumann/Dataflow Hybrid Architecture
The von Neumann architecture is better understood and used than any other architecture for

uniprocessor systems. Unfortunately, the optimization techniques for von Neumann uniprocessor
architectures do not always apply to multiprocessors. As the number of processors is scaled up, the
latency to access global memory and the overhead of synchronizing tasks running on different processors
become fundamental bottlenecks (3]. These two factors result in unpredictable latencies in memory and
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communications systems, and can also cause processor idleness in the form of pipeline bubbles. In
specific, the latency cost to access memory is incurred on a per-instruction basis, but achieving
synchronization on a per-instruction basis is impractical. In a dataflow architecture (such as the TIDAI architecture [2]), an encoded dataflow graph represents the program, and machine instructions become
self-sequencing. As a result, the dataflow architecture tolerates latency and synchronization costs
naturally. However, intra-procedural communication is unnecessarily general in a dataflow machine. AsI- pointed out in [7], it should not be necessary to create and match tokens for every instruction within a
procedure body. Some scheduling can be done by the compiler, thereby saving corresponding run-time3- overhead.

The Empire Project at IBM Research is currently designing an architecture which is a hybrid of the von
Neumann and dataflow architectures. The project goal is to marry these two architectures such that the
advantages of both these approaches are exploited to provide scalable general-purpose parallelism. In
addition, the architecture aims to provide built-in support for real-time systems. The distinctive features
of the architecture are the following:I e The architecture supports multiple threads of computation within an invocation.

e The execution time of an instruction is independent of memory latency, giving rise to split3 transactions. The memory access delay can therefore be masked by other active instructions.

e The hardware supports synchronization on every word in memory leading to a very large
(248) synchronization name space.

I * The compiler-generated code calls for synchronization when and only when it is necessary.

* The machine language expresses the concepts of both implicit and explicit synchronization5 (thereby allowing partial ordering of totally ordered sequences of instructions).

3. The Compilation Target for the Hybrid Architecture
The compilation target for the hybrid architecture is as shown in Figure 1. Each instruction can refer to

(up to) 2 source operands, and 1 destination operand. Each computation thread is represented by a
single-word continuation. The continuation consists of a pointer to a data frame of 256 words, containing
the data accessed by the corresponding thread, and indices into the data frame for the source operand(s)
and the destination operand. The first word in the data frame (called the Map entry) points to a 256-word
code frame containing the instructions executed by the thread. The instruction to be executed next by the
thread is represented in the continuation by an index into the code frame. Instruction execution is
normally sequential as on a von Neumann machine. If a thread tries (say) to read a location with
unwritten data, it can be suspended and hardware automatically switches to other active threads. The
suspended thread is reactivated (in hardware) when the corresponding data item is available. Thus,
execution continues in dataflow fashion as well. Forks and joins of threads from the same invocation take3 place in a single cycle. Threads belonging to the same invocation share frames, but must run on the same
processor.

The memory hierarchy consists of a main storage unit which is accessible from all processing elements.
The main storage comprises of heap storage as well as code and data frames. Each processing element
has a cache for a large number of data and code frames. Processor accesses to data and code are normally
on the locally cached frames. Every frame is private to an invocation, and therefore does not pose any
coherency problems. A frame can be locked such that when the frame cache fills up, the locked frame
will not be cast out to global memory by the frame cache replacement policy.3 89
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I Figure 1: Compilation Target for Real-Time Applications

I 4. Support for Real-Time Systems
One of the goals of the Empire architecture is to provide built-in support for real-time systems. The

primary motivation behind this goal is that the hybrid architecture provides low-cost synchronization
functions which can be used effectively in real-time systems.

In this architecture, all continuations (threads) belonging to the same invocation have an associated
priority represented by 8 bits. The continuation queue represents the traditional ready queue in operating
systems, and is a hardware priority queue providing a very efficient means of building priority-driven
real-time systems. An 8-bit priority representation was chosen for the reason that there is hardly any
performance difference between using an infinite number of priority levels and 256 levels [8]. The
architecture also supports the mechanisms of get and set priority, create and kill process, and activate and
suspend process. These mechanisms are sufficient to build a priority-driven real-time system [141, andcan be used to design an efficient yet predictable system based on analytical techniques such as that based
on the rate-monotonic algorithm [9, 12].

I aParallel and concurrent processing represent the implementation of an application as a set of
cooperating tasks. Real-time applications, in particular, are characterized by the need for frequent
communication between several tasks to coordinate various activities. A significant degree of speedupfor real-time applications is therefore possible only if the synchronization and coordination of these tasks
can be accomplished at low cost. The hybrid architecture provides a rich set of efficient synchronization
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3 mechanisms for real-time systems. State bits are associated with every word in memory, and allow

synchronization to take place on every memory word on a per-instruction basis. Threads belonging to the
same invocatior synchronize (intra-procedural synchronization) within a cached frame, while inter-
procedural synchronization takes place in the memory heap. In addition, the architecture supports
producer/consumer state transitions. Transitions supported in hardware are "Multiple Producers, Single
Consumer" with FIFO and LIFO queueing options, and the "One-time Producer, Multiple Consumers"
synchronization mechanism.

The overhead of context-switching is often a concern in real-time systems. In the hybrid architecture,
the state of any thread is represented by a single word, and a continuation is added to the rcady queue in
priority order by special-purpose hardware. As a result, context switching including queue insertion and
deletion can be carried out within a few cycles.

The architecture explicitly supports process migration by means of mapping data frames to different
PE's. This mechanism can be used to support mode-changes [13], fault-tolerance and dynamic
reconfiguration in real-time systems. In addition, each processing element also has a real-time clock, and
a countdown timer for implementing time-based operations.

1 5. Operating System and Language Issues
The new set of primitives offered by the hybrid architecture poses a host of interesting questions for

real-time operating systems and languages. While the architecture itself may be novel, existing operating
systems and languages can be supported well. However, given the primitives of the hybrid architecture,
some tradeoffs traditionally employed in real-time systems must be reconsidered, and we expect that new
approaches will become possible. For example, synchronization costs are often considered so prohibitive
in real-time systems that extensive optimization and/or modifications are carried out on traditional
architectures to reduce synchronization requirements. The overhead of the rendezvous synchronization3 mechanism in Ada [1] has proved to be a dominant factor in the limited use of the Ada tasking model in
real-time systems. In addition, the scheduling of parallelizable tasks has not been studied extensively in
the literature on real-time systems 1. In contrast, the hybrid architecture provides efficient intra-procedural3 and inter-procedural synchronization, leading to cheap inter-process communication and efficient
parallelization of real-time tasks. Furthermore, powerful synchronization mechanisms for the hybrid
architecture can be built on top of the embedded support provided for multi-producer, single-consumer3I queues with FIFO and LIFO options. An example of such an abstraction is a multi-producer, multi-
consumer discipline with priority-ordered producers/consumers using a serializing manager process.

Finally, the priority ordering mechanism almost always carried out in software can be carried out with
extreme efficiency in hardware on the hybrid architecture. Context-switching can also take place in the
duration of a few cycles, rather than in a few hundred cycles.

6. Current Status and Schedule
Te Empire project at IBM Research is led by Dr. Bob lannucci and consists of 6 other full-time

researchers. The specification of the hybrid architecture is reaching completion, and a language calledKUDOs has been designed for intermediate representation of parallelizable application programs.

3 1a'n analysis of paralleliiable tasks from the scheduling point of view is presented in [6].
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3 Languages that are planned for support include Fortran, Id, and Ada. An 8-processor hardware emulation

engine with each processor emulating 8 logical processors is currently being prototyped, and will be
completed by September 1990. A preliminary version of a software simulator for this prototype is
currently operational. A 1024-processor prototype is tentatively planned for completion by the end of
1994. A software simulator of this final architecture is expected to be completed by the end of Summer
1990.

7. Acknowledgments3 Credit for the architecture and software efforts ar due to the Empire project comprising of Kattamuri
Ekanadham, Steve Gregor, Mike Hale, Kei Hiraki, Bob lannucci, Ragunathan Rajkumar and Paul Suhler.
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1 Introduction

Real-time systems can be exposed to a high number of environmental stresses and hazards that
can lead to faults in the computer hardware. For example, high environmental and operating tem-
peratures, short deviations in the piwer supply, vibrations, etc. can cause hardware faults. Various
architectural measures can be taken to make real-time systems resistant against the occurrence of
faults. Some of the major design issues concerning the dependability of real-time computer systems
are the fault hypothesis, types of redundancy, recovery strategies, and the behavior of components
upon the occurrence of faults.

Two significant attempts to experimentally evaluate some promising design choices have been
under way at the authors' inst'tutions for several years. The approaches to fault tolerance adopted3 in the two projects share some common characteristics (e.g., the type of redundancy) and yet reflect
substantially different design philosophies (e.g., the degree of synchronism). Brief overviews of the
two architectures will be given and the approaches taken to realize fault tolerance will be discussed.
Finally, some possible extensions will be mentioned briefly.

I 2 Overview of the DREAM/LAN Model

The primary focus at UCI (University of California at Irvine) DREAM (Distributed Real-Time
Ever Available Microcomputing) laboratory was to develop and evaluate system level fault toler-
ance techniques. However, observing predictable performance was a major guiding principle. The
testbeds developed include tightly coupled multiprocessor systems as well as a local area network
that is also used to simulate wide area networks [Kim89a]. From these systems the architectural
model called DREAM/LAN is extrapolated. It basically consists of a number of cooperating fault-
tolerant computing stations interconnected by a LAN.

In the DREAM/LAN model, computations are activated asynchronously. The execution of
tasks is triggered by the arrival of messages generated internally or externally to a node. The
sequence of task activations is determined dynamically under a deadline driven scheduling approach.
The availability of knowledge on maximrum execution times of real-time tasks is assumed. Taie-s3 communicate by exchanging messages via the network.

'This work was supported in part by the University of California MICRO program and AT&T under Grant 89-
148 and in part by the Austrian Science Foundation (Fonds zur F~rderung der wissenschaftlichen Forschung) under3 contract J0350-PHY.
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3 Overview of the Architecture of MARS

The fault-tolerant real-time system architecture MARS (Maintainable Real-Time System) has
been developed at TUW (Technische Universitait Wien) [KDK*891. The basic building blocks of
the MARS architecture are the so-called MARS clusters. Each cluster is composed of several
components interconnected by a synchronous real-time bus. A component is a complete computer
with its own copy of the MARS operating system kernel executing a set of real-time tasks. All
components have access to a common global time base supported by distributed clocks with known3 synchronization accuracy [K087].

MARS is a highly synchronous system architecture. All hard real-time tasks are activated
according to a periodic schedule calculated off-line. The off-line resource scheduler plans not only
the usage of each component's main processor but also the access to the cluster-wide real-time bus.
Communication among tasks is realized by the exchange of periodic state-messages with a validity
time. As soon as the validity of a message expires, the operating system kernel ensures that the
message can no longer be read by application tasks. One characteristic feature of MARS is its
highly deterministic timing behavior even under peak load and in the presence of faults.

4 Comparison of the Mechanisms Adopted for Realizing Fault Tolerance

Fault Hypothesis. The fault hypothesis defines the types of faults that are expected to occur and
which the system is designed to cope with. Faults outside the fault hypothesis cannot necessarily
be tolerated and might lead to system failures. Therefore, the fault hypothesis must be chosen to
include all the faults that are expected to occur in a non-negligible fashion. The fault hypothesis of

the DREAM/LAN model contains software faults as well as hardware faults. The current phase of
the MARS project concentrates on transient and permanent hardware faults within the components
and on the real-time bus. Software faults might be introduced into the fault hypothesis cf MARS

in the future.

I Types of Redundancy Applied. Many kinds of redundancy like hardware, software (including
information redundancy), or time redundancy can be applied to achieve fault tolerance. Depending
on the point in time when redundant components are activated, we can distinguish between static
(i.e., redundant components are active already during fault-free operation), dynamic (i.e., redundant
components are passive during fault-free operation and become active only after the occurrence
of a fault), and hybrid redundancy (i.e., static and dynamic redundancy are applied at the same

time). Static redundancy (sometimes also called active redundancy) demonstrates a superior timing
behavior compared to dynamic redundancy. An active-redundant node can provide its results
immediately after a fault has occurred in the primary node, whereas a passive-redundant node
under a dynamic redundancy scheme would need some time to perform the calculations that the
primary node could not complete successfully. Therefore, static redundancy is favorable in real-time
systems.

Static redundancy is the main approach employed in the DREAM/LAN model such that active-
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redundant nodes forming a computing station provide fast forward recovery. Within each node of

a computing station software redundancy in the form of recovery blocks [Ran75] is incorporated.

Redundant nodes use different try blocks as their primary blocks in parallel, thus transforming

the dynamic software redundancy of classical recovery blocks into static software redundancy. The

acceptance tests consisting of logic and time tests are identical in primary and backup nodes.

Redundant nodes cooperate to send a single accepted result via the network. The resulting fault
tolerance scheme is called the distributed recovery block (DRB) scheme [KW89]. Assuming that a
computing station contains two nodes, three different failure cases can be distinguished upon the

execution of the acceptance tests:

* 1. The primary node fails and the backup node passes. This situation will be recognized by
the backup node when a notice from the primary does not arrive within the timeout period
or when an explicit notice of an acceptance test failure comes from the primary node. The
backup takes over the role of the primary and delivers its results to the successor node. The
failed primary node tries to become the new backup node by executing its alternate try block.

2. The primary node passes and the backup node fails. The primary node is not disturbed at
all and forwards its results. The backup node tries to recover by executing its alternate try

block.

3. Both nodes fail. This might directly lead to a system failure in an application with highly
stressful response time requirements. In any case, primary and backup nodes try to roll back
and execute their alternate try blocks. If at least one of the nodes succeeds in passing the
acceptance test, the station continues to serve the application.

3 The current version of the DRB scheme assumes the existence of only two nodes and two
try blocks but conceptually the degree of redundancy can be increased to n hardware nodes and
rn versions of software. Under the DRB scheme, both software and hardware faults are treated
uniformly to a large extent. The static hardware and software redundancy minimizes the delay for
the delivery of results in case of a node failure.

MARS applies static hardware redundancy at the component level by running identical com-
ponents in parallel. All redundant components receive the same input, execute the same operating
system kernel and the same set of application tasks, and send their results as state-messages via

the network. The filtering of redundant messages is done within the operating system kernel of the
receiving component. Redundant components do not cooperate but run completely autonomously
without knowing that (and how many) redundant components exist. A failed component does not

inform any other component about its failure explicitly but remains silent. If one of a set of redun-
dant components fails, the results produced by the remaining components are available without
any delay, thus providing efficient forward recovery.

Time redundancy is incorporated in order to tolerate transient faults on the real-time bus. A
PAR protocol using acknowledgments and retransmissions is avoided because of its unpredictable

timing behavior. Instead, all messages sent are automatically duplicated by the operating system
kernel and the duplicates are transmitted immediately after the original messages. Even during
the time when only a non-redundant component is available, a transient fault on the real-time bus
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can thus be tolerated. Neither component faults nor transient faults on the real-time bus change
the timing behavior of a MARS system upon their occurrence.

Recovery Mechanisms. Backward recovery is not well suited for real-time systems because of
the significant time overhead involved in rollback and retry. Sometimes it is not even possible to
roll back exactly to a previously established checkpoint because the state of the environment might
have changed in the meantime. Forward recovery tries to compensate for the failed computation byIestablishing a new, valid state without rolling back to a previously stored state. Forward recovery
is preferred in real-time systems for the obvious reason of recovery efficiency.

Both system models apply forward recovery at the computing station level which follows nat-
urally from the static hardware redundancy applied. Different approaches are taken to recover a
single node. In the DREAM/LAN, the failed node tries to recover by rolling back to the last check-
point and executing the alternate try block to update its computational state and local real-time
data-base (backward recovery). This causes the node to fall behind the primary node temporarily.
If the computing station is not fully utilized, the failed node will catch up with the primary node
sometime after it has finished its alternate try block.

Forward recovery in MARS is a very simple process provided by the static-redundant compo-
nents. As long as two redundant components remain operational, the computing station can recover
from a single hardware fault. However, since MARS components are assumed to be fail-stop, nodes
shut down themselves whenever an error is detected and spare nodes have to be integrated even if
the fault was only transient to reestablish the full fault tolerance capabilities of the system. The
reintegration of components is in a conceptual study phase.I
Fail-Stop Components. Components used to build fault-tolerant architectures can be catego-
rized by their failure behavior. Fail-stop components decide by themselves whether their results
are correct or not, i.e., they are self-checking. Extensive error checking is carried out within the
component. Ideally, fail-stop components produce only correct results or no results at all. By
running redundant fail-stop components in parallel, single faults affecting only one of a pair of
fail-stop components can be tolerated. The overall complexity of fault-tolerant systems consisting
of fail-stop components can be kept relatively low but much effort has to be placed into each node
to achieve a self-checking coverage whicl is sufficiently high for critical real-time applications.

Both system models aim toward having fail-stop nodes as the basic building blocks of their
architectures. In the DREAM/LAN model only information that has passed the acceptance test
successfully is forwarded to the successor station. The acceptance test consists of a logic and a time
acceptance test because missing a specified deadline for delivery of results is also considered to be a
failure of a try block. This reflects the correctness criteria in real-time systems where results must
be not only logically correct but also delivered in time to be valuable. Acceptance tests are the
primary means of facilitating (app-oximate) fail-stop behavior of each node in the DREAM/LAN.

It is normally very expensive, if not infeasible to achieve perfect fail-stop behavior in any
sizable computing component. In the case of using the DRB scheme, imperfect'acceptance tests
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are a major source for propagated faults. Corrupt information that slip through an acceptance
test can be propagated to other tasks executed on the same or on a different node. A distributed

conversation scheme which provides fast forward recovery and supplements the DRB scheme by
handling propagated faults is currently under investigation [Kim89b].

In MARS, a high self-checking coverage is sought by applying error-detection mechanisms at
the operating system kernel level (plausibility tests, timing controls, etc.). Besides that, application
tasks can be duplicated and their results compared. Currently, a new hardware component (single

board computer) is under development that supports the operating system in achieving a high self-
checking coverage by applying additional hardware error-detection mechanisms (like ECC codes,
watchdog timers, control flow monitors, etc.). It is assumed that such a component can achieve a

self-checking coverage above 99%.

1 5 Extensions

A number of research tasks aimed for extending the results achieved are in plan. For example,

some of the major tasks planned in the DREAM laboratory are the tasks of evaluating distributed
conversations with strict timing constraints and that of developing techniques for increasing the
reconfigurability of fault-tolerant computing stations. Some of the future activities in the MARS

project will include experimentally evaluating the self-checking coverage of the new hardware com-
ponents currently under design as well as thorough evaluation of the dependability characteristics

* of a MARS system.
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Abstract. The DASH resource model is a workload and scheduling model that allows
communicating peer entities to reserve the resources (such CPU and network bandwidth)
necessary to achieve given delay and throughput objectives. The immediate goal of the
model is to support digital audio and video in distributed systems. The model defines a
parameterization of client workload, an abstract interface for hardware resources, and an
end-to-end algorithm for negotiated resource reservation based on cost minimization.

1. Introduction
Audio and video (or continuous media) can greatly increase the effectiveness and range of a user interface. It will
soon be possible to equip average workstations with the hardware to handle digital continuous media [1] and to con-
nect these workstations by wide-area networks capable of handling continuous-media data [2]. This hardware base
can support applications like video conferencing systems and the real-time display of video data stored on a remote
file server [3].
Such applications transmit continuous data streams between hosts, and impose performance constraints (delay and
throughput) on this transmission. The performance of current hardware (CPUs, networks, disks, etc.) is generally
sufficient for continuous-media data. However, the scheduling policies used in hosts and gateways are designed pri-
marily for fairness and simplicity. Therefore, especially during periods of heavy system load, the performance of a
given connection may fail to meet the application's requirements. To remedy this situation, an approach to resource
management with the following properties is needed:
* Resources (CPU, network, disk, etc.) that can potentially become bottlenecks must be scheduled in a way that

allows "reservations" (with performance guarantee) to be made to individual clients.
a In making a reservation, clients must specify their workload. This is only possible if the workload is known when

the reservation is made, i.e., if the software generating the workload operates in a deterministic, time-invariant
fashion.

* Since data may traverse resources on several hosts, a protocol for distributed resource reservation is needed. This
protocol in tam requires a uniform interface to the various resources involved.

In this paper we describe the DASH resource model [4], a basis for resource reservation and scheduling in distributed
systems designed to have these properties.

2. The DASH Resource Model
In the DASH resource model, the set of system components that handle continuous-media data is decomposed into a
set of resources. A resource may correspond to a schedulable hardware device and its accompanying software driver.
For example, a CPU and its scheduler can comprise a resource. Resources may also have a more complex structure: a
local area network (which includes multiple interface devices, concurrent operation, and multiple scheduling mechan-
isms) might be treated as a single resource.
The DASH resource model assumes that work is assigned to resources in discrete units called messages (typically a
segment of continuous-media data). Each message has a well-defined arrival time at which it is available for handling

Th. work was sponsored in part by the California MICRO program, AT&T Bell Laboratorier, the Digital Equipment Corporation.
Olivetti S.pA., and the Hitachi Corporation.
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by a resource, and completion time at which the handling is finished. The flow of continuous-media data is considered
to consist of linear simplex message streams that pass through one or more resources. Data is generated by a source
resource (a disk, digitizer, or compression unit), is then processed by a sequence of handler resources (networks,
CPUs, etc.) and finally is consumed by a sink resource (disk, decompression unit, etc.). A message's completion time
in one resource is its arrival time at the next resource. Many of these simplex data streams may exist concurrently,
even within a single application. Therefore this scheme encompasses many continuous-media applications: playback
of continuous media from disk, storage to disk, live conversations between human users, and so on.

2.1. Linear Bounded Arrival Processes

Each data stream flowing across an interface defines an arrival process into the downstream resource. The DASH
resource model uses linear bounded arrival processes (LBAPs), an abstraction introduced by Cruz [5]. An LBAP has
the following parameters: mamum message size S,, (bytes)

maximum message rate R ,, (messages/second)
maximum burst size B,,,.. (messages)

In any time interval of length t, the number of messages arriving at the interface may not exceed B,, 1 + t R,,,,. The
long-term data rate of the LBAP is Smi.Rm. bytes per second. The burst parameter allows short-term violations of
this rate constraint, modeling programs and devices that generate "bursts" of messages that would otherwise exceed
the rate constraint.

We define a function b (m) representing the logical "backlog" of the arrival process. This is the number of messages
by which the arrival process is "ahead of schedule" (relative to its long-term rate) when message m arrives. The
backlog is not necessarily the number of queued messages. b(m) is defined by

b(mo) = 0
b(mi) =max(0, b(mi-1) - (ti - t -1 )R . + 1)

where ti is the arrival time of message mi. Using b(m), we define the logical arrival time 1(m) of a message m as

I(mi) = ti + b(mi)/ R...
Intuitively, 1(m) is the time m would have arrived if the LBAP strictly obeyed its maximum message rate.

2.2. Sessions

The use of a resource by a particular data stream is called a session. A session represents a reservation of part of the
capacity of the resource. Clients must establish sessions with all of the resources they need (using a scheme defined
below) prior to sending data. As part of the reservation, the client must specify its workload; in return, the resource
provides a bound on the delay it will impose.

Each session has associated sets of LBAP parameters for its input and/or output interfaces. A handler accepts LBAPs,
producing output LBAPs. The client of the resource must enforce the input LBAP parameters; the scheduler of the
resource must enforce the output parameters and delay bounds. We assume that handlers do not lose messages or
modify their size, so the incoming and outgoing LBAP for handler resources must have the same values for S,,,.,, and
R.,,. On the other hand, incoming and outgoing LBAP may have different burst sizes. In addition to their LBAP
specifications, handler sessions also have the following parameters:

ria-imum logical delay Lmax
minimum actual delay A ,T
maximum buffered delay M m,,

The actual delay of a message m in a handler resource is the time interval between its arrival at the input interface and
its arrival at the output interface. The logical delay of m is the interval between the m's logical arrival time and its
logical arrival time at the output interface. Logical delay, rather than actual delay, determines end-to-end delay
bounds. The buffered delay is the portion of actual delay during which the message is stored in host memory. In
resources such as wide-area networks, Mm,, will be smaller than L,,, due to propagation time. Am, and Mm,, are
used to calculate buffer space needs.

When data traverses a sequence of resources, the basic sessions within the resources are said to form an end-to-end
session. An end-to-end session represents a unidirectional point-to-point communication path that traverses several
resources, either within a single host or across a network. The output interface of each resource in an end-to-end ses-
sion is the input interface of the next resource. Each resource must be prepared to handle the burst size generated by
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the previous resource. The end-to-end logical delay of a message is the interval between its logical arrival time at
source output and its logical arrival time at the sink input. The maximum logical delay of an end-to-end session is the
sum of the maximum logical delays of its handler resources.

2.3. Implementing the Resource Interface

The DASH resource model defines a uniform abstract interface to resources: clients request sessions, and the resource
manager can grant or deny requests. The manager is responsible for honoring the delay and burst size limits for the
requests it grants. If we restrict our attention to resources that consist of a single hardware device (e.g., a CPU), we
see that the resource interface can be successfully implemented on top of a range of scheduling policies. Any policy
for which an upper bound on delay can be derived from given input LBAP parameters can be used. For example,
round-robin, FIFO, rate-monotonic and earliest-deadline-first scheduling all have this bounded-delay property.
Many existing results in scheduling theory [6] can also be applied. If no guaranteed delay needs to be smaller than

the interarrival time of messages on a session, a simple test for preemptive rate-monotonic scheduling of a singular
resource would be

R t(s) T..(s):5 IEI (2 1/1E 1)
saEE

where E is the set of all established sessions (including the new one) and T,,,, is the maximum service time for each
message [7]. Worst-case simulation provides a more general decision procedure [8].

For resources that encapsulate more than a single device, the management procedures are more complicated. For
example, the sources of delay in an FDDI network (viewed as a single resource) include queueing, media access, and
propagation, and many scheduling policies are possible. Establishing a session in such a resource may involve using
network management protocols to reserve network bandwidth in "synchronous" or "isochronous" channels. The
question of how to support sessions in such a resource is a subject of ongoing investigation.

2.4. An Economic Approach to Delay Allocation

It may be possible for a resource to guarantee a maximum delay anywhere within a certain range. The shorter the
delay is, the more costly it is because the resource has less freedom to schedule its work items - and the fewer addi-
tional sessions it can support. To divide the delay between resources in an end-to-end session the DASH resource
model takes an approach based on economics (this approach has also been used for problems such as routing and
load-balancing [91). When a client reserves a session with a resource, the resource makes reservations for the smal-
lest possible maximum delay. In addition, the resource provides a cost function indicating, for each larger maximum
delay, the associated cost to the client. The client may relax the maximum resource reservation to minimize cost.

Cost can either be real money, to be later billed to the client, or some metric reflecting the resource's current load.
Typically, the cost function will not be static, but will be a function of the workload of a resource or parameters like
the time of the day. For tractability, the DASH resource model requires that every cost function be 1) piecewise
linear-, 2) strictly monotonic decreasing, and 3) convex. The first value for which a cost is given is the smallest
achievable maximum delay. We assume that at some point more delay will not lead to lower costs because the cost
for buffering messages over the delay period will exceed the cost saved by the larger delay.

The cost of an end-to-end-session is the sum of the costs of its component sessions. Since we have defined cost func-
tions to be piecewise linear convex functions, they can be combined by the following procedure: The segments of the
functions are sorted in order of decreasing (more negative) slope. They are concatenated in this order, starting at the
point which is the sum of the initial endpoints of the functions. The resulting function reflects the policy of returning3 excess delay in a way which minimizes total cost.

2.5. Buffer Reservation

The DASH resource model is designed to prevent message loss due to buffer overflow. For a given resource, this
requires reserving enough buffer space to accommodate the input burst size plus messages being processed in the
host. In bytes, this is given by the expression

Sm,, (B max + R max Mmax)

When several basic sessions are chained within a single host, buffer space to accommodate input bursts is only
needed for the first session of the chain. A-
A second need for buffer space arises when the receiving end of an application must deliver messages at a constant

, rate to the output device (e.g., audio or video converters). Suppose the first message of a stream arrives . ith
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minimum delay. If the application outputs the first message immediately, and the second arrives with maximum
delay, there will be an unacceptable pause in the output between the two. Assuming that the source resource gen-
erates messages fast enough to maintain a nonzero backlog, this problem can be avoided as follows. The receiver
waits until R (Lj-A,,) messages have been received (where Lm. and Ai. are the sums of L,,, and A mi, over all
sessions in the end-to-end session), and then waits until the logical arrival time of the last of these messages. If O,.3 is the output burst size of the last session, the number of bytes needed for buffering is

S.(0 .. + R...

2.6. End-to-End Session Establishment

The DASH resource model defines an establishment protocol for end-to-end sessions. Using this protocol, the
application's allowable end-to-end delay is divided between the resources, and burst sizes am established. The estab-
lishment protocol is carried out by host resource managers (HRMs). Initially, the HRM at the source host is given a
client request that specifies the resources involved, the message size and rate, and the end-to-end logical delay
requirements (a target and maxmum value, denoted Et and E,,,). The protocol has two phases:

(1) The first phase traverses the hosts from the source to the sink. A request message is relayed between HRMs.
The request message contains the data message size and rate, the client delays E.... and E,,. the burst size
from the previous host, and the cumulative sums of La. and A,, ,, and the cumulative cost functions. Max-
imum reservations are made for each resource, and corresponding buffer space is reserved.

(2) The second phase proceeds in the reverse direction. The receiving client evaluates the end-to-end session
parameters and decides on a delay for the session. A reply message containing the remaining excess delay
(see below) and the burst size into the next host is passed back towards the source. For each resource, the ses-
sion parameters are relaxed appropriately. The delay may be increased and additional buffers may be
reserved both for this purpose and to accommodate larger input bursts. Delays are relaxed only up to the
amount of buffer space available.

Let E., be the actual end-to-end logical delay obtained in the first phase of the session establishment. If this delay
is less than Eung,, some excess logical delay E... defined as E,,. = E,., - E.,t can be distributed among the
resources. This should be done as economically as possible, i.e., in a way which saves the largest amount of money.
In the second phase of the protocol, each HRM hands the remaining excess delay to the previous one. Each HRM
knows the outgoing accumulated cost function and the cost functions of all local resources. It shifts the outgoing cost
function to the left, so that the first cost value is given for 0. From this cost function the segments from 0 to E.... are
examined. If any of these correspond to segments of local cost functions, the corresponding resources are relaxed by
the time-extent of the segment, provided there is enough buffer space available. If E.,,. lies in the middle of a seg-
ment, the amount of the relaxation is the part of the segment that lies to the left of E,,. Any excess delay that is not
returned to local resources is passed back to the previous host

3. Conclusion
We have described the DASH resource model, a scheme to achieve guaranteed-performance communication in distri-
buted systems. Other models, both statistical and deterministic, could offer the possibility of describing a broader
range of traffic properties (for example, average message loss). The model we chose has the advantage of being sim-
ple and useful for deriving performance guarantees for a variety of scheduling disciplines. Our primary application
area, continuous media, is well supported by our model.

The algorithms we have presented are conservative: worst-case assumptions are made, and during the establishment
of an end-to-end session other establishment requests may be rejected needlessly because maximum reservations are
made for each resource. This last problem can be avoided easily by blocking each new request until pending requests
are completed. Optimistic approaches, similar to those in transaction processing, may be suitable for resource reser-
vation in the real-time application domain.

Finally, the model deals with one-to-one communication only. This is sufficient in our current research where we
apply the DASH resource model to IP-based communication in the Internet 110]. Since continuous-media systems
will be used to a large extent for groupware applications like conferencing, multi-point connections are an important
issue. Our future work will address this problem, extending the model of end-to-end sessions to include multicasting.
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1 Introduction

The axiom that "you can never have enough processing power" seems to be true in many
application fields. However, as more processing power becomes available, it may make some
existing problems trivial, while creating new uses for the power.

In the field of robotics, recent increases in processing power have made computer-
controlled sensing and actuator servoing economically feasible. For many types of devices,
the technological bottleneck for low-level sensing and servo-control is gradually shifting from
computer technology to sensor, actuator, and materials technology. These same increases
in processing power have opened the door for the possibility of executing robust high-level
perception and planning algorithms in real time.

Temporal characteristics (e.g., execution times, deadlines) of high-level motion planning
algorithms tend to have a different "flavor" than low-level servo-control algorithms. The
execution times of many servo-control algorithms are more or less fixed, and the algorithms
are required to execute periodically, on very short periods based on the mechanical charac-
teristics of the device being controlled. We may be allowed to slightly vary the period or
occasionally skip one or more periods, but major scheduling changes may have unpredictable
results.

Motion-planning algorithms, however, may have temporal characteristics which depend
on the current state of the device or the environment. Their execution times may increase
as the environment becomes more difficult to traverse, for example. Because they are make
use of environmental information, however, they may be able to adapt their execution to
the environment. The following sections describe the temporal characteristics of a motion-Ia
planning algorithm used in the Adaptive Suspension Vehicle (ASV), a six-legged vehicle
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I designed and built at AMT and the Ohio State University to study locomotion in rough
terrain [1].

I 2 The Motion Planning Algorithm

The planner is driven by body velocity requests from the operator's joystick. The planner
maintains a continuous vehicle velocity plan. The plan is made up of plan segments, which
the planner periodically computes and adds to the plan. A plan segment consists of two
portions: a normal portion containing requested body acceleration to be used for a certain
duration into the future, followed by a safety portion containing contingency deceleration
to zero body velocity. The safety portion of a plan segment is overwritten by the following
plan segment, if the new plan segment is added to the plan by its deadline, the time at
which the previous plan segment's normal portion expires. Since each validated plan ends
with deceleration to zero velocity, the vehicle and its operator will remain safe even if a

I plan segment misses its deadline.
When computing a plan segment, the planner uses a super-real-time vehicle simulation

[2] to verify the safety of all planned actions before they are executed by the actual vehicle.
The simulation checks vehicle stability at small time increments called simulation intervals.
If the simulation reveals accelerations which render the vehicle unstable, the simulation is
repeated with reduced accelerations. Eventually, either the simulation is successful and the
resulting sequence of body and leg states is appended to the previous plan, or the simulation
fails and the previous plan remains in force.

Figure 1 shows a one-dimensional vehicle velocity plan (velocity is really a six-
dimensional vector). The visible plan contains two plan segments, P1 and P2, each with a
normal portion and a safety portion. Each portion is broken into several simulation inter-
vals. If plan segment P2 is added to the plan before the actual time reaches the end of Pin,
the vehicle continues with P2n, and so on. If plan segment P2 has not been computed by
its deadline "deadline2", the plan follows Pls. Subsequent planning takes place based on
the corresponding vehicle velocity.

3 Timing Analysis

I The planner executes periodically. During each planning period, the planner generates
one plan segment. The length of the plan segment may be fixed, or it may be allowed to
vary (actually, only the length of the normal portion is directly selectable). The important
constraint is that the planner must meet its deadline. That is, it must generate a plan
segment and append it to the plan before the previous plan segment's normal portion runs
out. The scheduling problem, as defined for this paper, is the problem of determining an
appropriate length of plan segments, and corresponding planning period, given the available
processing power.

I
I
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3 Velocity

Time deadline2

I
Figure 1: A Motion Plan

For a given processor, the amount of time required to calculate a plan segment is ap-
proximately:

DTp , x D- + DT,,

I where

DTp = the amount of time to compute a plan segment;

3 V,. = the vehicle's maximum allowable velocity;

Ad = the acceleration during the safety "deceleration"
portion of the plan segment;

3 DT, = the simulation interval;

DT6 = the amount of time required to evaluate the vehicle
dynamics during each simulation interval;

DT. = a fixed amount of overhead time associated withacomputing any plan segment;

The derivation of the cost function is not relevant to this discussion. However, the
analysis raises several points:

The cost of planning is related to V.,,,. Since more can happen in a given planningperiod if the vehicle is moving rapidly, planning takes more time. However, the presence
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I of V,,... in the cost function could make it possible for scheduling algorithms to adapt
performance to meet timing constraints. For example, the planner may be able to tell the
vehicle: "Walk more slowly. I can't plan this fast.", much the way humans (presumably)
operate.

The cost of planning is inversely related to Ad. "Slamming on the brakes" in response to
a missed planning deadline is cheaper than coming to a slow, smooth stop. As with Vmx,
this could allow an adaptive scheduling algorithm to adjust the performance of the vehicle
to available processing power.

When choosing the length of the normal portion of the plan segments, and therefore
the planning period, we could schedule the planner frequently, thereby generating many,
shorter, plan segments. This would have a higher overall cost because of the repeated
DT,, overhead. Furthermore, frequent, short executions of the planner are more likely
to be affected by small scheduling disturbances, such as handling high-priority interrupts.
This may result in plan segments missing their deadlines and activating the previous plan
segment's safety portion, resulting in a bumpy ride.

At the other end of the spectrum, we could choose to generate longer normal portions
of plan segments. However, because the time lag between a operator's command and its
enactment by the vehicle is proportional to the length of a plan segment, long plan segments
imply slow response to operator's commands. This may not be acceptable when maneu-
vering in close quarters, and does not allow the planner to replan rapidly in response to
changing environmental conditions (such as foot slippage).

The ASV currently uses an adaptive scheduling algorithm. It starts with short plan
segments, computed frequently. It monitors the planner, and if plan segments are completed
uncomfortably close to their deadlines, it lengthens the normal portion of the plan segments
(and increases the planning period).

1 4 Conclusion

The temporal characteristics of high-level, motion-planning algorithms tend to be less pre-
I dictable than those of low-level, servo-control algorithms. This may make scheduling diffi-

cult.
Fortunately, robot motion-planning algorithms, by virtue of their level of interactionIwith the robot and environment, may be able to adapt their scheduling to the environment,

and to adapt the behavior of the robot to the available processing power. This will allow
robots to "intelligently" attempt to fulfill their duties, to the degree possible for the current3 situation.
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SOFTWARE DEVELOPMENT FOR HARD REAL-TIME SYSTEMS

I Constance Heitmeyer and Bruce Labaw
Naval Research Laboratory3 Washington, DC 20375

INTRODUCTION.

I In [3], a hard real-time (HRT) system is defined as a system 'that must supply information within
specified real-time limits'. Recently, the Naval Research Laboratory (NRL) initiated a new software
engineering project to evaluate and extend techniques and tools for developing software for IIRT

systems. We are especially interested in the scaleability of the newer techniques and tools. In
particular, to what extent do these help in the software development of real world systems with
critical timing constraints? Our effort will build on work completed under an earlier NRL research

project, called Software Cost Reduction (SCR), that applied software engineering principles to the
reconstruction of the A-7E aircraft's Operational Flight Program (OFP).

In this paper, we briefly review the document-driven software development methodology used
in SCR, describe the capabilities we seek in tools supporting HRT software development, and
summarize our initial work with a prototype toolset called SARTOR, a product of ongoing research
at the University of Texas (UT) [9,10,11]. Given its graphical language for specifying the software's

functional and timing requirements and the automated assistance it provides for verifying that the
resulting specification satisfies critical timing constraints, we believe that SARTOR represents a£ major step toward the next generation of tools supporting HRT software development.

SCR BACKGROUND

5In SCR, a software development methodology was formulated whose major goal is to produce
correct software that is easy to understand and easy to modify. With this methodology, the results
of software development are captured in a series of formal, concise, carefully designed documents

(13]. An initial document, the software requirements document, describes the required external
behavior of the software. A second document, the module guide, describes the software structure,
i.e., the software's decomposition into modules, where the criterion for module decomposition is
the information-hiding principle. Later documents provide abstract specifications of the interfaces
among the modules. Once the modules and their interfaces are specified, a series of module design
documents specify the substructure of modules. These module design documents provide the basis
for process decomposition, i.e., how a module is decomposed into a set of sequential processes [2,8],
where each process contains operations that must be executed in a specific order.

These documents, examples of which are provided in [7,1,12], constitute r set of abstract

descriptions of the software. An abstract description is one that many possible software implemen-
tations could satisfy. The most abstract document is the requirements document, which specifies
only the software's externally visible behavior, postponing decisions about software structure, al-

gorithms, and data representations to later stages of software development [5,6]. Later documents,
such as the module guide, the interface specifications, and module design documents, are inter-
pretations of the requirements document and as such must be consistent with it. These abstract

documents lead eventually to the most concrete description of the software, namely, the executable
software code.

I 1o8

U



I

1 CAPABILITIES OF A TOOLSET FOR DEVELOPING HRT SYSTEMS

We believe that the document-driven methodology described above should be encapsulated in a3 toolset supporting HRT software development. Summarized below are four capabilities we require

in such a toolset. Two of these, verification of timing constraints and implementation on parallel

processors, are of particular importance in developing HRT systems, while the the other two, checks3on completeness and consistency and executability, are of more general importance.

Verification. A crucial requirement of a HRT system is that it satisfy critical timing requirements.

We need assurance about the relative and absolute timing of certain critical events. To achieve

such assurance, we seek tools that help developers formulate the required timing constraints and

that help verify that the software specification satisfies these constraints.

Consistency and Completeness Checks. A major goal in SCR was to design documentation

in a manner that makes inconsistencies and incompleteness apparent to the software developers. In

(7], for example, output functions and mode transitions are presented using a tabular format, mak-

ing some instances of inconsistency and incompleteness obvious. To aid software developers, we

seek tools that automatically identify cases of inconsistency and incompleteness in a specification.

Automated detection of some classes of incompleteness and inconsistency, e.g., missing or incon-

sistent table entries, is straightforward. Automatically detecting other, more complex cases, e.g.,

inconsistencies in the system's timing properties, is more difficult and requires more sophisticated

tools.

Implementation on Parallel Processors. Reference [3] presents a design supporting sequential

processes in HRT systems and their synchronization. Because it assumes global knowledge about

the system state, this design is most useful when the software is implemented on a single processor.

Distributing the system among several parallel processors requires an extension to this design,

since, in a distributed architecture, each processor only has knowledge about its local state and

must obtain knowledge about the state of other processors via external communication channels.

Hence, we need a process model that allows implementation on distributed processors and a tool

supporting that model. A tool that can automatically (or semiautomatically) produce a distributed
implementation from a specification would be especially useful.

I Executability. One approach to answering questions about HRT software requirements is to con-
struct a prototype. Experience with a prototype can yield valuable information about the required
functions and, especially important for a HRT system, about the system's timing properties. In

addition, a prototype can be used to evaluate the specifications in the requirements document,
i.e., to determine wvhether the requirements document accurately describes the desired external

behavior. We believe that users are more likely to find errors by experimenting with a prototype

than by poring over formal requirements specifications. Generating the prototype from the re-
quirements document rather than from scratch should lead to greater assurance that the prototype

is consistent with the requirements document. To accomplish this, we need a tool that provides
assistance in translating a specification into a prototype.

3 SARTOR OVERVIEV

The SARTOR toolset includes a prototype tool called MODE(,IIART which provides a graphical
language for specifying software requirements [10, 11], additional tools that translate MO)E-

ChIART into a form of first-order logic called Real-Time Logic (RTL) [9], and a prototype tool
that provides automated assistance for verifying RTL assertions. Using the mode concept intro-
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duced in [7], MODECHART supports the partitioning of a system's state space into modes. ModeItransitions are defined using predicates on state variables, events, and time intervals. RTL, which
is designed for reasoning about a system's timing behavior [9], allows a system's behavior to be3specified formally by a set of assertions. Often, a constraint on the system's logic that is desired
by the software developers but not included in the software requirements may be expressed in
RTL assertions; if the system has been described correctly, the assertion may be provable from the3 original MODECHART specification translated into RTL.

Recently, we evaluated existing requirements tools to determine whether any can support the
capabilities described above. Although a few existing commercial tools, such as STATEM ATE [4],
provide limited support for some of these capabilities, e.g., completeness and consistency checks,
no commercial wol supports the full set of capabilities. Our conclusion is that the SARTOR tech-
niques and tools represent major progress toward a future production quality toolset providing
these capabilities. The assistance that SARTOR provides to developers in proving timing asser-
tions about the specification is a crucial step toward verifying that the software satisfies certain
timing constraints. SARTOR should also prove helpful in checking a specification for inconsistency
and incompleteness; while some straightforward checks can be done directly on a MODECIIART
specification, more complex checks will require translation of the MODECtlART specification into
a real-time logic and formal analysis of the logic. Further, a MODECHART specification could be

the basis for automatic generation of a prototype. Finally, because it already supports both serial
and parallel modes, refinement of a MODECHART specification into a specification that supports
implementation on distributed processors is feasible.I
INITIAL WORK ON SARTOR

In December, 1989, NRL installed a copy of MODECHART, obtained from UT, on a SUN 3/60.

After experimenting with MODECIIART and communicating with UT, NRL initiated several tasks
involving MODECHART and other SARTOR tools, three of which we summarize below.

5 New Module Decomposition. Because both UT and NRL are working with SARTOR, we
plan to do a module decomposition of the toolset with the goal of making SARTOR easier to
change. This includes definition of abstract interfaces among the SARTOR tools and examination

and possible redefinition of the module structure of individual tools. Because of limited resources,
we anticipate only limited recoding. One possible change under consideration that will require
some recoding is use of a commercial database system as the primary data storage medium for

SARTOR.

Enhancements to User Interface. To the extent feasible, the user interface to the toolset
should be easy to learn and use, should minimize the opportunity for errors, and should allow
developers to focus on the problem at hand, i.e., describing the software requirements. To evaluate
MODECIIART as a specification language for software developers, we have been using MODE-
CHART to describe the requirements of a complex IIRT software package, the A-7 OFP, whose

complete requirements are described in [7]. This initial use of MODECIIART has suggested some
possible enhancements to the MODECIIART user interface. For example, currently, the tool ouly
allows views of the requirements specification based on modecharts, a succinct f-orm of state transi-

tion diagrams. We are currently exploring other views of the spt.cification, e.g., tabhs, that wolld
complement the modechart view.

3 Identification of Classes of Timing Properties. It is unlikely that an automated system can
assist in the verification of all timing properties. Therefore, we are currently reviewing the A-7E
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j requirements document to identify the classes of timing properties important in a complex HtRT
system. Identification of these timing classes will be provided to UT to suggest possible directions
that future efforts to build verification tools might take.

TECHNICAL ISSUES

In our evaluation of MODECHART, a number of technical issues were identified as topics for future
investigation. These are discussed briefly below.

How do we handle different models of time? The SCR model of mode transitions is different
from that of MODECHART. MODECHART defines mode transitions as taking zero time. Events
in MODECHART are associated with a particular time and can cause a chain of transitions if
members of the chain are conditioned on an event's occurrence. In the SCR model of event
triggering, only transitions waiting on an event before the occurrence of the event are triggered.
This presents obvious difficulties in a distributed system. We plan to provide a formal method of
translating between these two different models of time.

Should actions setting system states be explicit? At the highest level of software require-
ments specification, one may define state variables and use them without specifying when each
state variable must be monitored. At a slightly more detailed level of specification, one must iden-
tify all actions that change the value of any state variable. At the first level, there is an assumption
that the values of all state variables are updated as necessary. At the second level, the assumption
is that no state variable is updated unless explicitly set by an action. Both levels are valid for
specifying software requirements. Proofs about timing may require the second method.
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Table V provides "Rule-of-Thumb Costs" to help complete the form.

Since a number of copies will be made of the completed forms. please use a typewriter or felt pen to make
the entries, which should be made in US dollars. For meetings held outside the USA. indicate here the
local currency (e.g.. Swiss Francs) and the conversion rate used.

Local Currency Conversion Rate _ Local currency units per US dollar

This form will be valid until the end of 1987: after that time. contact the Director of Conferences for a
more recent one.

Send completed form to: The Computer Society, Director of Conferences. 1730 Massachusetts Avenue.
N.W.. Washington. D.C.. 20036-1903. (Phone 202-371-0101. TWX: 7108250437 IEEECOMPSOI

REQUEST FOR CS SPONSORSHIP X CO-SPONSORSHIP_. COOPERATION

I
01/2S87
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-PLEASE PRINT OR TYPE-

7- MEETING TITLE. DATES. LOCATION

Official Title ofMeeting: Seventh IEEE Workshop on Real-Time Operating Svstems and Software

Acronym:

Location(fulladdress): University of VirginiaI Thornton Hall, Charlottesville, VA 22903-2442

Housing Facilities (if different) ---

Dates: May 10-11, 1990

3. STATEMENT OF GENERAL CHAIR & FINANCE CHAIR
I have a copy of the Computer Society's -Conference Handbook" and I understand my responsibilities as outlined there.
This form including the budget has been prepared to the best of my ability and is complete and accurate. I understand thwhenever it appears that the meeting may be in financial trouble, the Director of Conferences must be consulted.
I agree to provide the final report- to return the CS advance loan. if any. to return the CS share of the surplus funds, if a.
and to close all accounts, all within four months after the meeting.
Further. I understand that all rights to this technical meeting are the property of and belong to the sponsoring entities.

General Chair Name Dr. Robert P. Cook IEEE/CS MemberNo. 7475361
Signature Date Sept 26, 1989 Phones: Office(8 04 )924,-7605Home(804)978-18

Address University of Virginia, Dent. of Comnuter Science, T,'ornton Hallj Charlottesville, VA 22903-2442

Finance Chair Name Dr. Sang Son IEEE/CS Member No. 2833598

Signature Date Sept. 26, 1989 Phones: Office( 8 04) 9 2 4 -760home(804)296-87:

Address University of Virginia, Dept. of Computer Science, Thornton Hall

Charlottesville, VA 22903-2442

3A. STATEMENT OF TECIIYIC%]L COMMITTEE CIIAIR Iif sponsored by TIC)
I have approved this meeting as submitted.

I Understand sponsorship involves a financial commitment by the T,'C and that surpluses and losses will be

apportioned as jgoverned by correct C'S policy.

"TC 1 Name T,'C Chair Si4naure

T"C "2 Name______________ 
____.

T C Chair tignature

, 3 
T,C Chair Signature

A-2IL .



4. MEETING SCOPE. BENEFITS. ATTENDANCE
For first-time meetings, define scope and discuss overlap with approved CS mtgs

This is the Seventh IEEE Real-Time Onerating Systems and Software Workshop

State benefits to society members: IEEE and ACM members will have an onportunity to contribute

3 to the solution of real-time computing short falls in the Ada language. There will

be technologv transfer opportunities between industry and academia.

Attendance ( from M 11) .................................... 75 96

Sessions .................................................. 1 7

I No. of invited papers ....................................... . 0

No. of refereed papers submitted .... .................... 90 ._....

3 No. of refereed papers accepted ............................. 30 18

3 5. SPONSORING & CO OPERATING ENTITIES. & FINANCIAL COMMITMENT
List all entities. indic.Le if for-profit.
Enutiv Representatives Name & Telephone % Financial Comrmtment

Commiurent Obtained
Prelim. Final

Computer Society TC Real-Time Systems 100% 0%

TC(if applicable) Dr. Robert P. Cook, (804)924-7605 -

TC (if applicable)

ACM:
SG(ifapplicable) Office of Naval Research $N01,'/

I.-
I-

6. SURPLUS & ADVANCE
ESTINLAT ED ACTUAL.1

Total income ifrom S 1) .................................... SI19, 79 0  9.713

3 Total expenses If mm 521 ................................. 15.991

Surplus from S3 .........................................

A-3



6. SURPLUS &AJLVANCF(Continued)

Itemizeexpendttures requiring an advance.

ten - . - - Amount

2, . __ _ _ __,.__._ __......._ _ _ _ _ _ _ S

3., S

4. S .

Total Advance Loan requested from all cosponsors .................................... s

Total Advance Loan requested from Computer Society ................................. S

Patxial Advance Loans requested from CS and dates when needed:

$7,000 /2 /1 / 89 4 4/ 1 /89 /5 /1 /89 / /

7. ENCLOSURES

Enclose draft Call for Papers. If requesting sponsorship or co-sponsorship list below and enclose all contracts includin
Hotel and Exhibits. and any other material relating to tinancial obligations.

8. STEERING COMMITTEE MEMBERS

Name Emplover Phone Office Phone-Home

Chair

9. TECUNICAL MEETING COMMITTEE MEMBERS

Name Employer Phone Ulfice Phune-Home

GeneralChair Dr. Robert P. Cook UVA (804)924-7605 (804)978-1892

ProgranChair- Dr. K. I. Lin U of TIlinois (217) 333-142&

FinanceChair Dr. Sang Son _ TVA (804)924-7605 (804)296-8727

Tutonals Chair* ---.........

3._Pleuse attach |lue silluung tn,.ulinl! addre-ss.
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1 9. TECBIWCAL MEETING COMMITTEE MEMBERS (Continued)
Name Employer Phone-Office Phone-Home

3 Exhibits Chair "-_ __ _ _

Publicity Chair Dr. Sang Son .UVA (804)924-7605 (804)296-872

I RegistradonChair Mrs. Sandra Sullivan UVA (804)924-6268 (804)985-739

3 Local Arrangement Chair __-

Publications Chair

Audio-Visuals Chair

ContactI
10. PUBLICATIONS

Yes No

3 Proceedings ............................... X

Published by CS ............................ X

3 No. to be printed ............................ ?no _ _

Sold by which Societies/Cos. IEEE CS

3 No.of pages ................................ 170

I Copyright assigned to IEEE .................. X

i If not. to whom .............................

3 Special issue of pub. planned ................ X

If yes. name of publication ................... Real-Time Systems Newsletter

3 Appmved by pub. editor ..................... . ...

I
I
I

L I .. .. . .. .



11. MILESTONES

Seventh IEEE Workshop on Real-Time Operating Systems De ay 10-11, 1990Meeting_ Date __ay___0-__I__1990_

Where a range if given, longer time is for Conference, shorter for Workshops. Asterisked items generally not applicable tc
Workshops. Only items with "-- in front must have Name and Date entered to obtain CS approval.

Responsible Date Minimum TimeBEFORE MEETIG Personisi Name Due -Before Mtq.

-Define mtg.. scope. etc. Gen. Ch. & VPConf. Cook X 12-18 mos.

Sign hotel intent letter- Local ArCh & DofC Cook X 10-14 M

Submit proposal for approval Gen. Ch. Cook X " 9-12 -

Cook X 91Appoint Committee Gen.Ch. Cook__________ __9-12_

Hotel Contract Signed Dir. of Con. Cook _ __9-12 "

Committee Meeting Gen Ch. N/A X 9-12 "

-Exhibit Sales Contract Exh. Ch&D of Conf. N/A *-12 "

Open bank account Fin. Ch & Dir of Conf. Son XX 8-11 "

-Call for Papers' Pgm. Ch. Lin X 8-11 "

-Finalize Publication Plans Pgm. RH IKCh. TA n 12/l8 .1 "

-Papers/Summaries from authors Pgm. Ch. /___3/1/90 5-11 "

-Advance announcement' Pub. Ch. 5- 6

Tutorial spkrs. cont-acts TL Ch. DofC. *- 6

Pgm. Committee Meeting Pgm. Ch. 3/31/90 4, 5

-Acceptance to authors Pgm. Ch. Lin 4- 5

-Author kits to authors Pubs. Ch. N/A ."- 5

"4 Plan sales/membership booth/ Local Ar&Dof Press "- 5

-Exhibit sales completed Exh. Ch. N/A "- 5

Committee Meeting Gen. Ch. Cook 3/31/90 5-

-Advance pgm' Pub.Ch. Lin 4/15/90 3- 4

-Press Release Pub. Ch. N/A 34

-Place magazine announce.' Pub. Ch. N/A 3. 4

-Final papers from authors Pgm, PU. Ch. Lin 3L12-0 "- 3

| 1 I 11 .. COov r.fI.irfr1 h week% onor to month m !of v%%ue. Al J.o rli%ini4 4'opv i.Lkrt 7 M ,erk, rtlonr. T\-pe"elung 5 t ii,. Pn.,ih k -j dj%'.N Pnntin 5 7 dav,IIAJbl Um,[ .j itsf. ,t..Ilnv -.i~P 'L herv1C.e I' wer",.
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I1I. MILESTONES (Continued)

BEFORE MEETING Responsible Date Minimnum Tir;
Personlisi Siame Due Weore Mtjt.

-Magazine ads appear' Pub. Ch. N/A __-1 82 Wks.

Audio-visuals quality "4 Aud. Vis. CIL -__________ 6-10 -

-Proceedings to printer Pub. Ch. Son 4/1/90 -t "

Cook_ __ __ _ _ _ 4/15/9

Final session room assign. Local Ar. Ch. Co4/59 -8 -

Tultorial notes to D of Conf. Tut. Ch. N/IA 6. wks.

Session signs available Local Ar. Ch. N/A .

-Final program' P gm& X-CCh. .Lin 4/5/90 5 -

-Advance registration closes Reg. Ch. Sullivan 4/15/ W) .

-Final program delivered Reg. Ch. Sullivan 5/10/90 * -

Badges/ribbons available Reg. Ch. Sullivan_______ 5/10/90 3. 3

Cook X
Hotel food planning quantity Local Ar. ____________2- 2

Son 5/ 8 /90
- Proceedings delivered to site Pub. Ch. ____________ .- 3 days

Hotel food quantity guaranteed Local Azr Cook 4 /15 /90 at Conf.

AFTER MEETING

Committee debriefing Gen. Ch. ____________ ___ Day after

Recommend committee awards Gen. Ch. 4-___________ 4 wks.

-interim Report & Advance Return 'Gen. & Fin. Ch. ____________ _ _ 2- 2 mos.

-Final report & monies G.,n. & Fin. Ch. Cook 91/S 4- 4 mos.

Fot'ut"e:
IIIl AJadcopv'required 6 weeks priorto month of issue. Ail advertisingf copy takes 7- swreksefort- Typebrtting5 7dav': Pmoiin 1.3davs: Pnntinqs- ,iavs..

Mailing L&5ts .3 weeks: m1ajini 3-5 davs; Poswa Sirmce 2weeks.

X = already completed
N/A =not apolicable
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12. BUDGET

MEETING EXPENSES Esatecu
(Exclude tutorials and exhibits)

ML Advertising (including printing. handling, mailing)

Complete attached advertising worksheet.-I _

(a) Call-for-Papers (019) .................................................. ........ _ _$_0

Wl Announcement (02 11 ... ................................................... __ S

(c) Advance Program (020) ...................................................... SS

(d) Posters (022) ............................................................... $ - S

(e) Other (specify) (017) _ . - _ _

Subtotal for advertising ........................................................ SS

(e) Tutorial expense (if tutorial advertising is not budgeted separately.

subtract 20% and add it to Tl ................................................ _ S

MI Total Advertising ........................................................... S 4,00o S 0

Adv. cost as % of total t cost (Ml / M1O) ......................................... S 2% S 0

M2 Committee Expenses

I (a) Secretary(851) ............................ No. hours X S/hr. = S_

(b) Telephone (830) ............................................................. S S

I (c) Postage (570) ............................................................... S S

(d) Committee Travel (871) ...................................................... S 1,000 S 0

(el Reproduction (190) .......................................................... S _ S

i (f Compmail +2 (830) .......................................................... S .S_

(g) Other (specify) (517) S S_

' S_ S_

' ,,2 Total Committee Expenses .................................................. S 1.000

i -,w-i!no! e,*1 ' T~12(1 hecrintca4eel w t) bu(dltu .,r .'JOK ,hould Include fund% tr j Compm.ul - it ('tIlnl I krv memherM ol Ule ,eenn( .wd Tech. lertung Commtutees.
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12. BUDGET (Continued)

REMARKS (c) Program Committee will meet at Dulles airport, near TashinptLn. D.C. on

March 31. 1990 to select program.

M3 Operating Expenses Esurnate ACOJ

(a) Advance Registration

(1) By Computer Society (761)
I (70% est. attendance X C, from Table IV) sL 0 S..L

(2) or by other means (show computation) (768) .................................
.24 hrs, x S19.70 mail/telephone/registration S 473 S. 475

(bi On-site registration 3 (762) ... ~,*l*p1 Wa2.P .. 19.7 158 7

(c) Guards (771) ............................................................... $ S-

(d) Gratuities. awards, attendee travel' (030) ....................................... S-- S_

(e) Keynote and special addressesI (875) .......................................... _,
0 0_ S_ 0

(f0 Audio Visuals -Labor & Equipment (719)...... s .creen. 70

(g) Typewriters and other equipment (713) ........................................ S S_

3hl Final program (artwork and printing) (600) ..................................... S o S_

i1 Proceedings for attendees- (615) .............................................. S S_

39.07 170 1071
No. copies 90 xS/page . x -,No.pages.............................. S s n71,

U) Signs Imeeting rooms. other) (795) ............................................ S 0 S_

(ki Meeting space rental 1715) ................................................... S 212 S n

N 3 Tota operating expenses .................................................... S2.) 8 4

III These items must he e-lained under RemarkS.
Ii, If dune nv CS Stan. enter C. fmrm Ir bhe IV per sltaff ieniber plus r:1v 1 e. InrP $es.

141 Cust per P.i~e if dune by CS Press is iti'.en fl Mble V.
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12. BUDGET (Continued)

M4 Other technical meeting expenses

Include and describe any expense not identified on previous pages.

Bank charges (070) S _ S

Rebates (670) S $

Bad debts (650) S S

Insurance (396) S_. S_ ,

Other(511) edit card bank processing fee.. S 332 S 272

a M4 Total other expenses ....................................................... S 332 S 272

M5 Meeting Expenses Subtotal

Add I MI, M2. M3.M4 .......................................................... S 8,316 s 1,897

MS Contingency (180) 1 O0
Enter 5 to 15% of line M5 (S1000 minimum) %SS S

M7 Computer Society Administr tive Services 5 (780) 1165 265

Enter 14% of line M5 ........................................................... S 1 26

Footnotes:
151 This is a mandatory entry for all meetings: it helps recover expenses incurred by the Computer Society for all technical meetings. For co-sponsored meetings.

this expense wU not be charged to the meeting but will be taken frum the Computer Society share of the surplus.

REMARKS

ha
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12. BUDGET (Continued)

MS Social Functions

(a) Coffee. pastries. etc.. between sessions (472)

No. breaks 4 XNo.people 95 X S/person 5,72 $ 1,575 S 2,110

(b) Luncheons (4711

No.Luncheons 2. X No. people 95 XS/person !5.-9 9  S 1,875 S 2,962

(c) Receptions (473) 21 2. .~1,600 1, 923

No. Receptions_1 XNo. people 95 XS/person 20.2- 1,600 S_ ,92

Idl Banquets (474)| ° 0
No. Banquets - X No. people - X S/person - S S

(e) Speakers Hospitality (475)

No. people 25 XS/person *2 .2...aYP .............................. S 460 S. 558

M If) Transportation (courtesy bus. etc.) (861) ....................................... S NA. S 0

1g) Other social functions (specify) (476] .......................................... S S 0

I
M8: above includes gratuities, taxes, and any related service fees.

MS Total Social Function Expenses S 5,510 S_

Social cost per attendee S 74 s 80

M9 Services from Computer Society Staff

Use Table IV to find the charge for any service desired and enter the amount below N/A

SERVICE YES CIL'.C.E

Call for Papers Artwork Include in M11 & Worksheet

Announcement Artwork Include in MlI & Worksheet

Ad%-ance Program Artwork Include in .%I! & Worksheet

Final ram Artwork Include in M3 & Worksheet
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12. BUDGET (Continued)

M9 Services from Computer Society Staff (Continued)

SERVICE YES CHARGE
Estimated cL

Mail Call for Papers Include in MI

Mail Announcement Include in M I

Mail Advance Program Include in M

Prepare Budget (763) S__

IfTreasurer's Service (764) S $

Advance Registrationt Include in M3

On-Site Registration Include in M3

Hotel Negotiations (765) S_$_

Other Negotiations (specify) (766) S__..,

Prepare & Place Press Releases Include in M I & Worksheet

Prepare Advertisements Include in M I & Worksheet

On-site Publications Sales No chargeI
On-site Membership Booth No charge

I Proceedings Publication Include in M3

Other services of the East or
West Coast offices (specify) (767)

S _.

i M9 TOTAL S_

M1O TotW Technical Meeung Expenses S_ ' S_
Add M5. M6. M7. MS. M9

I ftnotes!
161 The 0l -rir of t " n fen -nces ohouJd be u r Lfa u r for aIl on fe rnce rquest n jdv ince r itstr o n prt e-s sng bV tle C S. A rinance chair should IW I

be 3potlfnte to the conference committee in L21is use.
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I
MEETING INCOMEI (Exclude tutorials & exhibits)

M 1I Registration Estimated Actual

I Advance Registration

Members 7 . ... .. . .. . .. . .. . ............. . 60 125 7,500 30 125 3,750

Non-memberss .... ............... ....... . 5 @$ 150 = 750 4 S 150 =S 600

Full-timestudentmembers 9 ......... . ..... 0 (S _ _ 27 S 50 S 1,350

I Other' 0 (specify below) ................ 0 S = S =

Late / On-site Registration" 7
7 145 1.015 19 145 2,755

Members 7 . .............................. . 175 525 18 260$

J3 175 525 7 180 1,260

Non-members s .. . . . . . . . . . . . . . . . . . . . . .  . $_ $8_ - (Sa S_ = _S

Full-time student members 9 . . . . . . . . . . . . . . S_ = S__ a 8 _ = S

Complimentaryl' 
........................ 9

Other 10 (specify below) .................. (a S_ = S r S- = S

Total attendance' 2 ......... . .. . . .. . .. . .. .
. .. 75 96

Last year's paid meeting attendance ............ 75

MI 1 Total Registration Income S 9,790 S 9,715I
M12 Other Income (specify)

3 Pub sales (300) S 0 S_

interest (140) $_ 0 S

I Other(706) Grant from Office of Naval Research S 10.000 S N/A

I M13Total Income(MII plus M2) ............................. S 19.790 S 9,715

Remarks

I
Fee. tnote.,

I1 Nlre,,herl .iif the Computer ,4Wtetv. IFEE. Co.f l-sp ,nfnnf or coopera nlg entltes
qIt N,., mi mber ril-',, -houeld be 25 30". higher thin ir-nne.r raite.
191I 'etel-nt rites u-.u.iiv .u- lor ser ns enlv and do men include 'mceedrmgs or 'cial functions,. it otherwe, please indicate under RemaziKs.

1101vt S(utv. tindrf Htmr'ks, xhel will recrte (ompi ntanrrl or s.pecidl rates. .old indicate it the rate ti. lUde. a "OpV of ithe 1 'rneedins aud attend.lrice at
- X I.d lnctitii%. It comm ttee members'. %pkJier. se-'.sion ch.irs. etc., %ill rec t cr complimentarv or .pecai rites. they ne u't be liste" here or thev must

plV the ,Ipplnpnae menmb-r or non member rite. Lse descrtion. Retired member'% .e.l entilded io reduced rates,. Special combInation rites otlennq discounts.
I e ier . llithendin ,) t function tu 00U be Nhow e c. Con. - I Tutun

-
l. Con(. - 2 rutonals or 2 Putonals etc.

l it site Reg-,t~H istationf rate', should be -it least 10"'. higther tMin adv~t1ce.I121 %1t ' simd e mrr than tU"., hieher thal last veal' ulUaJ should be espLund.
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• e T:gtIIAdL dtENSES EsUmated Actual

TI Advertising (including printing, handling, mailing). Complete attached
worksheet. If tutorial advertising is not budgeted separately enter amount

.st -from Ml.e

T2 Operating Expenses

(a) On-site registration1 3 (768) ................................................... S S

(b) Guards (772) ............................................................... $ S

(c) Gratuities (031) ............................................................. S S

(d) Audio Visuals-Labor & Equipment (717) ...................................... S

(e) Typewriters and other equipment (720) ........................................ S _S

(f) Texts (613) .............. No. copies XS/copy 4 .  . . . . . . . . . . . . . . . .  S $

(g) Notes (614) ............... No. copies X S/copy l4 .  . . . . . . . . . . . . . . . .  S S

S(h)Signs (798) ................................................................. SS

(i) Speaker fees and travel expenses

No. of tutorials - No. of days

No. of full-day spe akers - x Rate 4 _ (637) S S

No. of half-day speakers - x Rate' 4
_ (637) S S

No. of spkrs - X travel exp/spkr - (872) S S

U) Meeting space rental (721) ................................................... S_ S

j T2 Total operating expenses .................................................... S 0 S_

T3 Other Tutorial Expenses (512)

Include and describe any expense not identified above

$_ S_

S__

1S_ S_
T3 Total other tutorial expenses ................................................. S0 S 0i

Fouotes
1131 If this will be done bv Computer Societv stafl. enter C, from Tnble IV plus tm el t-en..es.
:1,41: Refer to rablA V.

i A- 14



7TUroRIAL EXENSES (Continued Esuatated Actual

I
T4 Tutorial Expenses Subtotal5 Add T I. T2. T3 .......................................................... . S S_______

5 TS Contingency (181)
Enter 5 to 15% of T4 % ..............................................

I
T6 Computer Society Administrative Services s (781)3 Enter 14% of line T4 ........................................................... $S S

T 7 Social Functions

(a) Coffee. pastries. etc. between sessions (481) ....................................

5 No. breaks __ X No. people X S/person __ SS

(b) Luncheons (482).........................................................

No. luncheons __ X No. people X S/person __ $SS

3 (c) Receptions (483) ............................................................

No. Recept. - X No. people - X S/person S S

(d) Other social function expenses (specify) (484) ..................................

17 Total social function expenses ............................................... S 0 s

T8 Total Tutorial Expenses 05 AddT4, T5. T6. T7 ............................................................. S S_ __

I REMARKS

I
I
I
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ITUrRILAL INCOME

T9 Registration Income Esuimated Actual

Advance Registration (440)

Members7 ............................... @ S_ S (a)S

Non-members8 ........................... @  =  =

Full-time student members 9 . . . . . . . . . . . . . . .  @ __ = S_ S

Otherl 0(specify below) ................... . @ _ =S _S

Late / On-site Registration' ( (442)

Members' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  @S =8 @S =SCUS S

Non-members . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . @S = $ _ (_ _ =

Full-time student members9  . . . . . . . . . . . . . . .  @ = S__

Other'o (specify below) ................... @ __ =

T9 Total Registration Income ................................. S 0 

TIO Other Income (specify) (709)

TIO Total Other Income .......................................... $ 0

S0
TilI Total Tutorial Income (T9 plus T10) ........................... S 0,

i
RENMARKS

footnote$i
171 lembernof thle Comouter Societv. IEEE. co-sponsonng or cooperating enuties
181 Non member rates should be 25-50% hiiltner thain member rate.
191 Student rates usuajlv are for sessions onJv and do not include Prmnce'dings or social lunctions: if otherwise. please indicate under Rem.lrk.s.

1101 Spetitv under RemArk. who will recelv complimentarv or special rates. and indicite if the rate includes a cop.. of the Prce-dinis and attendance at
sociaJ functions. if committee members, speakers, session chUrs. etc.. will receve compltimenLtrv or special rates. thev must be listed here or theY must
pav tle appmpnate member or non-member rate. Use discretion. Retired member-% ar entitled to reduced rates. SpecL l combinauon rates oderinn disCOunt
for attending two functions must be shown ie. Conl. - I Tutona. Cont. - 2 "lPtonaJl Ur 2 Tuton.ls etc.

lII Late On-site Registration rates should be -it lca .t 20% higher tLtan advance.
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U
EXHIBIT EXPENSES Estimated Actual

El Advertising (including printing, handling, mailing) (015)

Complete attached advertising worksheet. If exhibit advertising is not budgeted separately.
enter a pro-rated amount of the advertising budget for the meeting.

E1 Total Exhibit Advertising .................................................... S 0 $

E2 Operating Expenses

(a) Space Rental (714) ........................... .............................. S $

(b) Management Fee (635) ....................................................... S S

(c) Security (773) .............................................................. S S

(d) Insurance (397) ............................................................. S S

(e) Busing (862) ............................................................... S S

(f) Drayage (712) .............................................................. S_____ $_____

(g) Other expenses (specify) (516) ................................................ S $

5 S _ _ _

S $

5 E2 Total Exhibit Operating Expenses ............................................ S n s

S £E3 Exhibit Expenses Subtotal

Add E 1. E2 ................................................................... s 0 S .U
E4 Contingency 03Enter 5to1501.of E3.. -___ 0%(182) ........................................... S____ S

I ES Computer Society Administrative Services5 (782)

Enter 14% of E3 ............................................................... . . S 0I
EG Tou-l Exhibit Expenses5 Add E2. E3. E4. E5 ................................................... ........ . .. S L

[51 This is i mandatorventr for all meetints; it helps rtcovr expenses incuend bvt he Compnter societ for.ijI technical meetjnis. For co ponson.d meetnats.
this expense will not be chAgue1 to the meetinti but wAll be L.hten frymm the Computer .ietv share 01 the surplus.
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EXHIBIT EXPENSES (Continued) Estimated Actual

I EXHIBIT INCOME

.3 E7 Exhibitor Fee Income

No. Exhibitors - X S/Exhibitor - (410) ............................ =

or No. Booths -__ X S/Booth - (4 10).................................. S_ ___ 8____

I ES Other Exhibit Vncome 'specify) (708) .......................................... SS

SS

0
E9 Total Exhibit Income (E7 plus ES) ............................................... S__

RE MARKS
I Describe exhibit facilities, state S/sq. ft. sales price of booth space. attach copy of any contracts. etc.

I
i
j S BUDGET SUMMARY Estimated Actual

SI Income

M13Total MeetingIncome ...................................................... S 19,790 S 9;715

TI I Total Tutorial Income ...................................................... S 0 0_ _

E9 Total Exhibit Income ........................................................ S 0 S 0

S ITOTAL NCOME ............................................................ 19 790 S 1

j 52 Expenses

M OTotal MeetingExpense ..................................................... S 15.991 s 9,7.15

T Total Tutorial Expense ...................................................... S 0 S 0

E6 Total Exhibit Expense ....................................................... SS

S 2 TOTAL EXTENSES ......................................................... S 1 5 . 9 9 1  S 9 7z 5 _

S3 Surplus ISl minus S2) ......................................................... S 3.799 S_______

A- 18
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ADVERTISING WORKSHEET

13. The costs given below represent approximate costs of services available through the Washington office. and are mean

to be guidelines only Actual charges may vary.

13.1 Call for Papers

Artwork & Tyfpesetting- Includes handling charge
(No. of pages - X S350) ................................................................... S

Printing: 9ty. .............................................................. S
See Thble I

Mailing

Postage (Bulk) @ 9.0c X Qty. ................................................ S

1 Postage (First Class) @ 22C (25C w/envelope) X Qty .............................. $

Mailing Labels (see Table III @ 4.5C X Qty. ...................................... S__

Labor c 3C per copy X Qty. ................................................. S

Periodic advertisement (List Names & Issue Dates) ............................................... S.

(See Table III)

Press releases preparation & mailing 4 S 150/release X Qty. ....................... S

Total. Call for Papers ........................................................................ S __

13.2 Announcement

Artwork & Typesetting- Includes .handling charge
(No. of pages - X $350) ... .......................................................... $ -

I Printing: Qty........... .................................................... S

See Table I

Mailing
Postage (Bulkl (a, 9.0c X Qty................................................. S

Postage (First Class) a 22C (25C w/envelope) X Qty. ............................ $_

%tailing Libels (see Table 1I) a 4.5c X Qty...................................... S_

Labor u 3C per copy X Qty.................................................. S

Periodic advertisement (List Names & Issue Datesl ............................................... S-

lSee Table Ill)

Press releases preparation & mailing ,a SI50/release Qty. ....................... S.

3Total, Announcement .....................................................................

A-1 9



I ADVERTISINMG WORKSHEET (Continued)

13.3 Advance Program

Artwork & Ty'pesetting -Includes handling charge
(No. of pages.-..X S350) .................................. S_____

Printing: 2 .1500 ................. S 3,0005SeeTalI
Mailing (See Table El)5Postage (Bulk) Ca 9.0c X Qty..................................................$____

4000 1,000Postage (First Class) (22c. 4 pages; 37c m.t 4: + 3c/envelope) X( gty................. S_ ____

ifMailing Labels (see Table fi) (a, 4.5c X - ty ....................................... S_ ____

Labora 3 Cper copy X Qty.................................................. $___

IPeriodic advertisement X' Qty ................................................... S_ ____
(See Thble I

Press release preparation & mailing (a. $150/release X ___.................._

ETotal. Advance Program ................................................................... ,0

13.4 Final Program

Artwork & Typesetting -Includes handling charge
(No. of pages - X S350) .................................................................. ______

Printing: Q ty ................................................................. s____
See Table I

Mailing (See Table I
(The final program is usually distributed only at the conference)

Postage (Bulk) (ai 9.Oc X - gy.................................................. S

Postaile (First Class) (22c, 4 pages: 37c m.t 4: + 3c,'envelope) X - tv ............. S______

Mailing Labels (see Table III u 4.5c X Qty ....................................... s______

Labor a 3C per copy. Xg ty ........................................ ........... S_____

Per-iodic advertisement ...................................................................... S_____
See Table Ill

(Telinal program is ualvdi5u-ibuted only at the conference)

Total. Final rmgrum ...................................................................... S o0
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Engineering Academic Outreach
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I

I CONFERENCE NAME: IEEE/CS Contact R.P. Cook 982-2215, 4-7605

Seventh IEEE Workshop on Real-Time Operating Systems and Software
Estimated and Actual Expenses

May 9-11, 1990

Engineering Academic Outreach
Report 8/1/90

5 INCOME:

REGISTRATION FEES Estimated Actual
60 Members @$125 $7500 30 @ $125 $3750
5 Non-Members @$150 750 4 @ $150 600
0 Students @ 27 @$50 1350
0 One-Day @ 0
7 Late-Pay Members @145 1,015 19 @ $145 2755
3 Late-Pay Non-Members @.. 55 Z 0'$180 16
87 Total Paid:

Total Registration Income $9,790 $9715

SOCIAL FUNCTIONS
__0 Banquet Tickets @ Included fee

0 Proceedings @ Included fee
0 Workshop Participants @ None

I 0 Page Charges @ None

OTHER SOURCES:

5 Grant from Office of Naval Research $10.000 $10000

Total Income $19,790 $19,715

I

I Recap of Participants
EMT ACT

Members 67 49
Non-Members 8 11
Students 0 27(I0 UVA)

87 paid participants

Complimentary 4 (Cook, Adrion, Kuhn, Segal)
Attended-Fees not collected 3 (Bunnell, Singh, Zedan)
Conference Workers 2 (Sullivan. Dean)

96
+2 Registered, didn't attend, didn't pay

(Jim Smith and Ralph Wachter)

98 registered

I
I
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I MEETING EXPENSES:
EsImated Actual

PROMOTION
Honorariums 1 x $1000 $1,000 0
Conference Proceedings, 1,071

printing and binding
Printing Services $434.40
Academic Outreach 636.40

Typing: gratis Cook 0
Mailing, Fax, Federal Express 33.52
**Call for Papers: gratis Cook 0
**Final Program: gratis Cook

-Advertising: 4.000 5=0 I5

I Total Promotion: $6,071 $2,354.52

MEETING FUNCTIONS
Meeting Facilities (if less than 90 room nights $212 Complimentary 0
Audio-Visual Equipment:

2 -8x10 screens @ $35x 2 days 70 70
5 Tabletop Mikes @ $8 each x 2 days 80
1 Lavalier Mike @ $20 x 2 days 40
1 Laser Pointer @ $25x2 days 50

Plus 4.5% Tax 250.80
Telephone/Registration Desk 26.12

Transportation None
Parking Complimentary
Total Meeting Functions: $282 $276.92

3 COMMITTEE EXPENSE: One trip to Dulles 1000 0

CREDIT CARD PROCESSING FEE $5445@5 % $272.25

3ADMINISTRATIVE COSTS:
Clerical 0 !9.70/hour
Type Brochures 0
Type Papers 0
Type Badges (Materials included) 9 hrs. 174 61.80
Registration/Mail/Telephone 24 hrs. 473 717.42
Registration/Desk-First day only, 8 hrs. 158 4 hr. 78.80

Conference Director-gratis 70 hr. 0
Attendees List 8 hrs. 158 1.5 hr. 29.70
Fiscal Administration/Deposits/weekly reports 75.30

3 Graohics (@ $32.70 hr,
Logo Cover included above
Overheads

IhTotal Administrative Costs $963 $963

TOTAL MEETING EXPENSES $8.316 $3.866.69

Continoencv -15% of Total Exoense (Minimum $1000) 1000 Q

I



i
I

I Estimated Actual

SOCIAL FUNCTION EXPENSES

Reception: $21.35 x 75 people 1,600 $20.25x95x1 $1,923.02
Banquet: None 0

Speaker's Breakfast $11.50 x 20 people x 2 day 460 $22.32x25x2 558.03

Lunch $12.50 x 75 people x2 days 1,875 $15.59x95x2 2,961.62
Breaks: Morning $6.50 x 75 people x 2days=975 $ 7.52x95x2=1429.42

Afternoon $ 3.75 x 75 people x2 days= S 3.58x95x2= 680.55
1538.$5.13

= 4 breaks x $5.25 per person 1,575 $5.55x95x4= 2,109.97

Total Food and Functions $,5510 $7,552.64
(includes 16% gratuity, 7.5% tax on meals and gratuity plus
estimated 4% seasonal inflation factor)

TOTAL EXPENSE $15,991 $80x95 $11,419.33
14% Fee Paid to IEEE 1,165 265.00
Purchase Order to IEEE/CS for Newsletter 8,030.34

TOTAL INCOME $19,715.00

IEEE Registration Income $9,790 9,715.00
ONR Matching Funds S10.715.00

TOTAL INCOME $19.715

PLANNED SURPLUS (RETURN TO IEEE) $3,799 0

iSchool (Sullivan)
"Department (Cook)
*'*ONR

I
I
I
I
I
I
I



I Attendee List for the 7th IEEE Real-Time Workshop, May 10-11, 1990
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Department of Computer Science
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215-898-3490
Anthony Burrell susan@central.cis.upenn.edu
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Department of Computer Science M. Donner
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804-982-2296 Terry H. Ess
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Dept. 233, M/S 28-1, 5301 Bolsa Ave
Huntington Beach, CA 92647 Stuart Faulk
714-896-3077 Software Productivity Consortium

2214 Rock Hill Road
Herndon, VA 22070

1 703-742-7117



Attendee List for the 7th IEEE Real-Time Workshop, May 10-11, 1990 2

i Robert J. FomarD Constance Heitmeyer
North Carolina State University Naval Research Lab
Computer Science Department Code 5534
PO Box 8206 Washington, DC 20375

I Raleigh, NC 27695 202-767-3596
919-737-7848 Heitmeyer@itd.nrl.navy.mil
fomam@cscadm.ncsu.edu

Ralf Herrtwich
John Fray International Computer Science
Naval Research Laboratories Institute Berkeley
Code 8333 1947 Center Street, Suite 600
4555 Overlook Avenue SW Berkeley, CA 94704
Washington, DC 20375-5000 415-643-9153
202-767-5757 rgh@icsi.berkeley.edu

Ahmed M. Gheith Lifeng Hsu
Georgia Institute of Technology University of Virginia
School of Information and Department of Computer Science
Computer Science Thornton HallI Atlanta, GA 30332 Charlottesville, VA 22903
404-894-3982 804-982-2291
gheith@cs.gatech.edu Ilh4h.cs.virginia

U Prabha Gopinath Kimlan Huynh
Philips Laboratories Naval Ocean Systems Center
345 Scarborough Road 271 Catalina Boulevard
Briarcliff Manor, NY 10510 San Diego, CA 92157
914-945-6539 619-553-6367
psg@philabs.philips.com

Farnam Jahanian
Karen Gordon IBM Research
Institute for Defense Analyses PO Box 704
1801 N. Beauregard Street Yorktown Heights, NY 10598
Alexandria, VA 22311 914-784-7498

.3 703-845-3591 FARNAM@ibm.com
* gordon@ida.org

David Jameson
Andrew Grimshaw
University of Virginia Kevin Jeffay
Thornton Hall University of North Carolina at
Charlottesville, VA 22903 Chapel HillI 804-982-2204 Dept. of Computer Science
grimshaw@cs.virginia.edu Chapel Hill, NC 27599-3175

919-962-1938
Rajiv Gupta jeffay@cs.unc.edu

I Philips Laboratories
345 Scarborough Road Russell Johnston
Briarcliff Manor, NY 10510 Naval Ocean Systems Center
914-945-6448 271 Catalina Boulevard
gupta@philabs.philips.com San Diego, CA 92157

619-553-4096
Karen Hargrovei Microsoft Corporation K.H. Kim
One Microsoft Way University of California
Redmond, WA 98052-6399 Computer Engineering Program
206-882-8080 Dept. of Electrical Engineering
nathanm Irvine, CA 92717

714-856-5542
Walter Heimeroinger KANE@lcs.Uci.Edu
Honeywell Systems and Research Center
3660 Technology Drive
Minneapolis, MN
612-782-7319I heimerdinger@src.honeywell.com



Attendee List for the 7th IEEE Real-Time Workshop, May 10-11, 1990 3

Young-Kuk Kim John P. Lehoczky
University of Virginia Carnegie Mellon University
Department of Computer Science Department of Statistics
Thornton Hall Pittsburgh, PA 15213
Charlottesville, VA 22903 412-268-8725
804-979-1051 jpl@k.gp.cs.cmu.edu
ykim@virginia.edu

Kwei-Jay Lin
Nobuyoshi Kimura University of Illinois
Carnegie Mellon University 1304 W. Springfield
School of Computer Science Urbana, IL 61801
Pittsburgh, PA 15213 217-333-1424
412-268-7673 klin@cs.uiuc.edu
N. Kimura@k.gp.cs.cmu.edu

Jane W. S. Liu
Robert B. King University of Illinois
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SCHOOL OF ENGINEERING AND APPLIED SCIENCE

I UNIVERSITY OF VIRGINIA

I OFFICE OF THE DEAN NOV 14 1989 CORRESPONDENT'S PHONE
THORNTON HALL (804) 924-

I
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

I Attention: Dr. Andre van Tilborg, Director

Computer Science Division, Code 1133

3 Dear Dr. Tilborg:

Enclosed for your review and evaluation are six (6) copies of our detailed budget for
the proposal entitled "Seventh IEEE Workshop on Real-Time Operating Systems and
Software."

U If we can be of further assistance, please contact Mr. Gilbert Hay, Director of
Administration, at 804-924-3310.

I Sincerely,

I E. A. Starke, Jr.
Earnest Oglesby Professor

and Dean

EASjr:ph

Enclosures: (6) Detailed Budget for SEAS Proposal No. CS-DOD/ONR-4511-90

c: Mr. Michael McCracken, ONR
Dr. R. P. Cook, CS
Dr. A. K. Jones, CS
Mr. D. W. Jennings, UVa.
Ms. R. A. Nixon, UVa.
Ms. F. B. Cline, UVa.3 Ms. D. E. Van, UVa.

I
I
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SUIIjJ1%N LKA t REQ'.UESTTbl 3
Federal Demonstration Project Table 3

TOt orrTcr or SPONsORED PROGRAMS - University of Virginia November 1989

A. Program Director: R. P. Cook Date, ovemer_1989

I Department: Computer Science Account Codes

Sponsor: DOD/ONR Grant No.:

Budget Period: 5/1/90 to 5/31/90

Change No. to this account CS-DOD/ONR-4511-90

3 B. Sponsor Approval Requested For: (Attach Letter to Sponsor)

Scope or Objective C__change or Absence *Establish Relatedness
Changes of PI

"Foreign Travel __No Cost Extention . LOther (specify) Define budgqet

I Complete Section D. and Relatedness Form (Dean's signature required only if more than
one department involved).

**See reverse for agencies requiring prior approval.

C. Institutional Approval Requested For: (See reverse for requirements)

'Preaward Costs No Cost Extension __Rebudgetinq from Direct Costs to
-- Indirect Costs and Vice Versa

a Department chair agrees to cover all expenditures not reimbursed by the funding agency.

D. Establish Project Relatedness with the Following Grants,

3 Principal Investigator Grant No. OSP ACCt. No.

3 Principai Investigator Grant No. OSP Acct. No.

E. Explanation/Justification: (Briefly cite scientific, technical or administrative reasons(s) for
this request.)

Sponsor requested detailed budget.I
I

F. CrtificationlApprovals:

The scientific and technical propriety of this request has been revieved and approved. This

request is consistent with the scope and objectives of the approved project.

3 Principai InvestlqatorR. P. Cook Date Department Chairperson A. K. Jones Date

5 esearcch Administrator G. Hay Date Dean (I' [equired per bection 8 aboveI Date

Znstiturional O.ficiaD. W. Jennings Date

rOMA SP-239 10/1/i8 OSp REQU1RzS ONE ORIGINAL Copy

I



_ SEVENTH IEEE WORKSHOP ON REAL-TIME
OPERATING SYSTEMS AND SOFTWARE

I PROPOSAL NO. CS-DOD/ONR-4511-90

Submitted by R. P. Cook
Associated Professor of Computer Science
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903-2442

DETAILED BUDGET

- May 1990

Committee ExpensesI Travel - program arrangements,selection of papers, speakers $1,000

I Registration Costs
Mail/telephone registration $473
On site registration, 1 day 158

631

Administrative Costs
Speaker-honorarium $1,000
Audio-visual equipment use 70
Conference proceedings booklet
copying costs 1,071

Meeting space rental 212
Badges, reports, deposits, etc. 332

2,685

Food and Functions
Meeting for informal discussions 1,600
Speaker's breakfast/lunch/break

inc. gratuities, taxes, fees 3,910
5,510

Contingency Funds 174

TOTAL *$10,0003 *Any excess funds will be used for special issue of the IEEE
Real-Time Technical Committee Newsletter.

I
I
I



, 'OFFICE OF SPONSORED PROGRAMS (OSP)
NOTICE OF AWARD , j e_

I University Account No. 5-25442 Date of this Notice: JANUARY 3, 1990

The University of Virginia has entered into an agreement as herein described.
I Initiation of the expenditure of funds is authorized in accordance with the

terms and conditions set forth in the attached sponsor's award doc nt and/or policy statement.

Program No. 10.000
BRS Subcode: Office of Sp osred Progr s

SPROGRAM DIRECTOR: COOK RP UNIT: Computer Science

UNIVERSITY ADMINISTRATOR: MS. CLINE TELEPHONE EXT. (804) 924-3931

I PROJECT TITLE: WORKSHOP OM REALTIME OPERATING SYSTEMS & SOFTWARE
SPONSOR: ONR (0500) GRANT/CONTRACT NO. N00014-90-J-1339

U CURRENT BUDGET PRD: 01/01/90 TO 12/31/90 PROJECT PRD: 01/01/90 TO 12/31/90

I AWARD: $10,000.00 DIRECT COSTS: $10,000.00 INDIRECT COSTS: $0.00

PROGRAM TYPE: Servire PROGRAM STATUS: New OLD ACCOUNT NO. 0-00000

I REPORTING REQUIREMENTS FREQUENCY FINAL REPORT DUE REMARKS

x Technical Reports: Annually 02/28/91 copy of report orI letter to OSP

x Fiscal Reports: Annually 03/30/91

x Patent Reports: Annually 02/28/91
- Equipment:

RENEWAL OR CONTINUATION APPLICATION DUE:

I PROPERTY AND EQUIPMENT CONDITIONS:

Sponsor or University approval required for specific items costing
* in excess of

Sponsor or University approval required for general purpose items
costing in excess of

I OTHER SPECIFIC CONDITIONS:
Requires Sponsor approval for Foreign Travel.
Requires Sponsor approval for any deviation from approved budget.
Requires cost sharing.

x Indirect Cost Rate 0 % of Salary & Wages MTDC TDC x Other3 Computer Funds:

Comments: IDC not applicable.Monthly billings for reimbursement
3 copies of proceedings required within 60 days of completion.
Prior approval required for travel from Communist Bloc countries.

I OSP Proposal No. P90-15004 OSP Award No. A90-1

I



§§§URTWNAL B1UL2L I111

ACCOUNT: 5-25442 PI: COOK RP DATE: 01/03/90 ,
PROPOSAL: 15004 ,

2 2 2 I

LEVEL 2 BUDGET CATEGORIES 2 CURRENT BUDGET 2 NET CHANGE
2 2 2

2 2 1
2 - PERSONAL SERVICES ** 2 $ 2 $
2 - OTHER THAN PERSUNAL SERVICES ***2 10,000.00 2

3-Fringe Benefits 2 2

3-Consultant Services 2 2

3-Technical Services 2 2

4-Computing 2 2

3-Travel 2 2 I
4-Foreign Travel 2 2

3-Health Care Services 2 2

3-Other Contr. Services 2 2 U
4-Publications 2 2

3-Suppl ies 2 2

3-Equipment 2 2 I
3-Current Charges 2 2

2 - SCHOL. & FELLOWSHIPS ***2 2

3-Trainee Travel 2 2

3-Trainee Stipends 2 2

3-Tuition & Fees 2 2
3-Other Payments 2 2

2 RENOVATIONS ***2 2

2 2
2 2

TOTAL DIRECT COSTS 2 10,000.00 2 0.00
TOTAL INDIRECT COSTS 2 2

TOTAL RESTRICTED 2 2

TOTAL BUDGET 2 10,000.00 2 0.00

LESS CARRYOVER 2 0.00 2

NET AWARD 2 10,000.00 2

* The number preceding the budget categories indicates the budgeting level. I
** Personal Services may ONLY be budgeted at level 2. U

*** NO amount may be budgeted at level 2 if level 3 and 4 budgeting is
required.

BUDGETING GUIDELINES
1. Level 2 budgeting is recommended whenever sponsor requirements permit *

(i.e. non-Federal unrestricted gifts and grants).
2. Level 3 will be required for most all Federal grants and contracts

because of standard budget restrictions and format
3. Level 4 budgeting should only be used when required by the Research

Administrator or sponsor restrictions (i.e. foreign travel, computing,
publications).

4. A positive category balance is mandatory for budget reallocations. 3

I
I



GRANT NO: N00014-90-J-1339
DEPARTMENT OF THE NAVY FORMERLY GRANT NO: N00014-90-G-0339
OFFICE OF NAVAL RESEARCH, CODE 1513:RAR R&T PROJECT: 4331778---01
800 NORTH QUINCY STREET ACO CODE: N66002

CAGE CODE: 1B752
ARLINGTON, VIRGINIA 22217-5000 DISBURSING CODE: N00179

3 SYMPOSIUM GRANT

3 GRANTEE: University of Virginia
Carruthers Hall, P.O. Box 9003 ,
Charlottesville, VA 22906

APPROPRIATION: AA 1701319.WIAE
Object Class: 000
Unit Ident Code: RA434
Suballotment: 0
Auth. Acct. No: 068342
Transaction Type: 2B
Prop. Acct. Act.: 000000
Cost Code: 015080000100
Amount: $10,000.00
FRC: 4331

R&T Project Code: 4331778---01, Dated: 08 NOV 1989

* TOTAL GRANT AMOUNT: $10,000.00

I AUTHORITY: 10 USC 2358 as amended, and 31 USC 6304.

GRANT PURPOSE: The Purpose of this Grant is to provide partial funding
I to support (u)Seventh IEEE Workshop on Real-Time.

The conduct of the workshop, the personnel and effort and the use of funds
for direct and indirect expenses shall generally be as set forth in the
Grantee's proposal entitled "Seventh IEEE Workshop on Real-Time Operating
Systems and Software", dated 17 OCT 1989 which proposal is incorporated
herein by reference. The Grantee agrees to obtain concurrence of theI Grantor for any desired deviation from the proposal.
PERIOD: The Grant is for the period 01 JAN 1990 through 31 DEC 1990.

I PRINCIPAL INVESTIGATOR: The Principal Investigator, Professor Robert P.
Cook shall be continuously responsible for the conduct of the project.I The Grantee agrees to obtain approval of the Grantor before changing the
Principal Investigator.

SCIENTIFIC OFFICER: The Scientific Officer representing the United StatesSGovernment under this Grant is Gary M. Koob, Code 1133, Office of Naval
Research, 800 North Quincy Street, Arlington, Virginia 22217-5000.

I GRANTS ADMINISTRATOR: The Grants Administrator for this Grant is:
Office of Naval Research
Resident Representative N66002I Administrative Contracting Officer

U



GRANT NO: N00014-90-J-1339

National Academy of Sciences
2135 Wisconsin Ave., NW Suite 102
Washington, DC 20007-3259

PAYMENTS: Upon submission of invoices by the Grantee in accordance
with the provisions of this Grant, the amount specified herein shall
be paid as set forth in Attachment Number 1. Invoices hereunder shall
be submitted by the Grantee in sextuplicate to the Grants Administrator
for certification and transmittal to the Navy Regional Finance Center,
Crystal Mall #3, Rm. 260 Attn: Code 431, Washington, D.C. 20371-5400,
where payment will be made.

I The Grantee is participating in the cost of this effort.
PERFORMANCE REPORTS AND/OR PROCEEDINGS: (a) The Grantee shall submit
to the attached distribution list the following documents within 60 days
after the end date of this grant:

3 copies of the Proceedings.

I-(b) The Grantee shall include a complete "Document Control Data -
R&D" form (DD Form 1473) as the last page of each copy of every
scientific and technical report prepared under this Grant. The form
contains instructions for preparation. The cognizant Government Grant
Administrator will provide assistance to the Grantee in obtaining the

I required forms. Administrative type reports, managerial (status)
reports, and reprints submitted as technical reports are excluded from
this requirement.

SPATENTS AND COPYRIGHTS: (a) With respect to patents and other rights
arising out of inventions, improvements or discoveries conceived or
first actually reduced to practice during the effort, Grantee shall
(1) give and hereby does grant to the United States Government an
irrevocable, non-exclusive, non-transferable royalty-free license to
practice or have practiced for its benefit, each invention (whether or

*not patentable) throughout the world, (2) advise Grantor of the filing
of each patent application in any country and furnish a copy thereof to
Grantor, (3) give Grantor the right to file patent application(s) for
any invention on which Grantee does not intend to file, as to which
inventions the Government is hereby granted sole and exclusive title,
and (4) on request, furnish grantor duly executed instruments fully
confirmatory of said license and/or title rights.

2
I
I
I
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GRANT NO: N00014-90-J-1339

(b)' The Government shall have the right to publish, translate, reproduce,
deliver, and dispose of all data, including reports, drawings,
b lueprints, and technical information which are delivered to the
Government under this Grant, and to authorize others to do so. With
respect to data which are not originated during the effort Grantee shall
give a similar license but only to the extent that Grantee and those in
privity with Grantee have the right to give such license without paying
compensation to others because of giving the license. At the time ofI giving or reporting any such data, Grantee shall make all reasonable
effort to advise Grantor (1) of all invasions of the right of privacy
contained therein and, (2) of all portions of such data copied from
work not composed or produced during the effort and not licensed under
this provision.

(c) Notwithstanding the provision of the preceding paragraph, the
- Grantee and the Government may agree that specifically designated data

shall not be published for sale by the Government, nor shall the
Government authorize others to do so when such data are published by
the Grantee, and shall so refrain so long as the data are protected by
copyright.

RESTRICTIONS ON PRINTING: Unless otherwise authorized in writing by the
Grants Officer, reports submitted hereunder shall be reproduced only
by duplicating processes and shall not exceed 5,000 single page reports
or a total of 25,000 pages of a multiple-page report. To satisfy the
requirement of the Defense Technical Information Center the copy of the
technical report submitted to the Defense Technical Information Center
must be black typing or reproduction of black on white paper or suitable
for reproduction by photographic techniques. Reprints of published
technical articles are not within the scope of this paragraph.

PUBLICATIONS:
i. Any publication resulting from work under this Grant shall contain
the following on the title page or on the page immediately following the
title page:

3This work relates to Department of Navy Grant N00014-90-J-1339
issued by the Office of Naval Research. The United States
Government has a royalty-free license throughout the world in all

* copyrightable material contained herein.

2. Any transfer of copyright ownership in such publication will provide
t hat the transfer of copyright ownership is subject to the U.S.
Government's royalty-free license throughout the world in all
copyrightable material contained in the publication.

U CIVIL RIGHTS ACT: This Grant is subject to the compliance requirements
of the "Civil Rights Act of 1964," 78 Stat. 241 (Public Law 88-352)E relating tc nondiscrimination in Federally assisted programs. The
Grantee has signed an Assurance Compliance with the nondiscriminatory
provisions of the Act.

P
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GRANT NO: N00014-90-J-1339

FINANCIAL RECORDS AND REPORTS: The Grantee shall maintain adequate
records to account for the expenditures made under this Grant and, when
applicable to this document the actual amount of cost participation.
Upon completion or revocation of this Grant, whichever occurs earlier,I the Grantee shall furnish to the Grants Administrator, a Financial
Status Report in accordance with OMB Circular A-110, Attachment G,
Exhibit 1, showing a breakdown of expenditures made in performance of
this Grant. Such financial statement may be on a cash or accruali basis depending upon the Grantee's accounting system. Such financial
statement may be in the same detail as contained in the Grantee's
approved budget for this Grant and shall be submitted no later than 90
days after the end of the annual reporting period or completion or
revocation of the Grant. The Grantee's financial records are subject
to audit by the Government when desired by the Grantor.

I UNEXPENDED FUNDS AND EARNED INTEREST: After the end of the Grant period,
any uncommitted funds and any interest earned by Grant funds on depositI shall be returned to the Office of Naval Research by check made payable
to "Office of Naval Research."

RESTRICTION ON TRAVEL: The Grantee must obtain prior written approvalI from the Grants Officer, before funds provided under this Grant may be
expended to provide for travel for persons from Communist Bloc countries.

i TRAVEL BY GOVERNMENT EMPLOYEES: Funding of travel by employees of the
U. S. Government with funds provided under this Grant is prohibited.

4
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GRANT NO: N00014-90-J-1339

RtVOCATION: This Grant may be revoked in whole or in part by the Grants
Officer after consultation and agreement with the Grantee, provided that
such revocation shall not affect any commitment which, in the judgment
of the Grants Officer and the Grantee, has become firm prior to the
effective date of the revocation; and funds not committed by the GranteeI prior to the revocation shall be returned to the Office of Naval Research.

UNITED OF__.

F T FF 0 V RESEARCH

,g ICER) Pw>/,4h , A A?.ekt J

(DATE)----

I
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GRANT NO: N00014-90-J-1339

I .

3AATTACHMENT NUMBER 2
Distribution List for Reports

i ADDRESSEE NUMBER OF COPIES
Scientific Officer Code: 1133 3 copies of proceedings

Gary M. Koob
Office of Naval Researchi 800 North Quincy Street
Arlington, Virginia 22217-5000

G rant Administrator 1 copy of proceedings
Office of Naval Research
Resident Representative N66002
Administrative Contracting Officer
National Academy of Sciences
2135 Wisconsin Ave., NW Suite 102
Washington, DC 20007-3259

i Defense Technical Information Center 1 copy of proceedings
Building 5, Cameron Station

i Alexandria, Virginia 22314

i
I
i
i
I
i
i
I
i
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I October 6, 1989

Ms. Maggie Johnson
IEEE Computer Society
1730 Massachusetts Avenue, NW
Washington, DC 20036-1903

Dear Ms. Johnson:

Enclosed please find a completed TMRF for the Seventh IEEE Workshop on Real-Time
Operating Systems and Software to be held in Charlottesville on May 10-11. 1990.

3 As you can se- from the TMRF. we anticipate a surplus from this workshop, as has been the
case with each of the previous six workshops in this series. Note that the US Navy Office of
Naval Researrh will provide a $10.000 grant to the workshop, and Virginia's Center for
Innovative Technology has been asked for $2000. reducing the IEEE/CS risk significantly.
Also attacher' is a full-page advertisement which will appear in the IEEE Computer Magazine
and in Comnninications of the ACM. A direct mailing will also be conducted. In addition, the
workshop Program Committee will meet at the Dulles International Airport near Washington,
DC on March. 31. 1990 to select a technical program. As a result, the requested advance of
$7000 from If EE/CS is needed as soon as possible to cover these costs.

Thanks for your help, please call me at 804-924-7605 if I can be of assistance to you.

I Sincerely,

I Robert P. Cock

Computer S.,ence Department

Enclosures: TMRF
3 Advertising

c: Dr. K. Lin
Dr. S. Son
Dr. R. Lowry

Ms. S. SullivanI
I
I
I
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I* DISTRIBUTION LIST
I I 1 -3 Scientific Officer Code: 1133

Gary M. Koob
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

4 Grant Administrator
Office of Naval Research
Resident Representative N66002
Administrative Contracting Officer
National Academy of Sciences
2135 Wisconsin Avenue, N. W., Suite 1023 Washington, DC 20007-3259

5 Defense Technical Information Center
* Building 5, Cameron Station

Alexandria, VA 22314

6 Dr. Krithi Ramamritham
Department of Computer and Information Science
Lederle Graduate Research Center
University of Massachusetts
Amherst, MA 01003

3 7-8 R.P. Cook, CS

9 A. K. Jones, CS

* E. H. Pancake, Clark Hall

I 10 S. Sullivan, Academic Outreach

3 11 SEAS Preaward Administration Files

I
3 *Cover letter only
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